
14

Trimaran Tutorial

An Overview of the Trimaran Compiler
Infrastructure

Trimaran Tutorial

15

Infrastructure Goals

• To provide a vehicle for implementation and

experimentation for state of the art research in compiler

techniques for instruction-level parallel architectures.

– Currently, the infrastructure is oriented towards Explicitly Parallel

Instruction Computing (EPIC) architectures.

• But can also support compiler research for Superscalar

architectures.

– Primarily, “back-end” compiler research

• instruction scheduling, register allocation, and machine dependent

optimizations.

Trimaran Tutorial

16

Terms and Definitions

• ILP (Instruction-Level Parallelism)
– more than one operation issued per clock cycle within

a single CPU

• EPIC (Explicitly Parallel Instruction Computing)
– ILP under compiler control

• A single instruction may contain many operations
• Compiler determines operation dependences and specifies

which operations may execute concurrently

Trimaran Tutorial

17

Infrastructure Support

The infrastructure is comprised of the following
components:
– A machine description language, HMDES, for describing

ILP architectures.
– A parameterized ILP Architecture called HPL-PD

• Current instantiation in the infrastructure is as a EPIC
architecture

– A compiler front-end for C, performing parsing, type
checking, and a large suite of high-level (i.e. machine
independent) optimizations.
• This is the IMPACT module (IMPACT group, University of

Illinois)

Trimaran Tutorial

18

Infrastructure Support (cont)

– A compiler back-end, parameterized by a
machine description, performing instruction
scheduling, register allocation, and machine-
dependent optimizations.
• Each stage of the back-end may easily be replaced

or modified by a compiler researcher.
• Primarily implemented as part of the ELCOR effort

by the CAR Group at HP Labs.
• Augmented with a scalar register allocator from the

ReaCT-ILP group at NYU.

Trimaran Tutorial

19

Infrastructure Support (cont)

– An extensible IR (intermediate program
representation)

• Has both an internal and textual representation,
with conversion routines between the two. The
textual language is called Rebel.

• Supports modern compiler techniques by
representing control flow, data and control
dependence, and many other attributes.

• Easy to use in its internal representation (clear
C++ object hierarchy) and textual representation
(human-readable)

Trimaran Tutorial

20

Infrastructure Support (cont)

– A cycle-level simulator of the HPL-PD
architecture which is configurable by a
machine description and provides run-time
information on execution time, branch
frequencies, and resource utilization.

• This information can be used for profile-driven
optimizations, as well as to provide validation of
new optimizations.

• The HPL-PD simulator was implemented by the
ReaCT_ILP group at NYU.

Trimaran Tutorial

21

Infrastructure Support (cont)

– An Integrated graphical user interface (GUI) for
configuring and running the Trimaran system.

Trimaran Tutorial

22

C program

To
IR

Modulo
Scheduling

Acyclic
Scheduling

Dependence
Graph

Construction

Post-pass
Scheduling. . . Region-based

Register Allocation
Simulator

Execution
Statistics

Machine
Description

System Organization

• A compiler researcher’s view of the infrastructure:

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

IMPACT

Elcor/CAR

ReaCT-ILP

Trimaran Tutorial

23

The infrastructure is used for designing, implementing, and
testing new compilation modules to be incorporated into the
back end.
– These phases may augment or replace existing ILP optimization

modules.

– New modules may be the result of research in scheduling, register
allocation, program analysis, profile-driven compilation, etc.
• For example, NYU has added a region-based register allocator.

The research process

New Modules

Each phase is
an IR IR
transformation

Trimaran Tutorial

24

Why use Trimaran?

• It is especially geared for ILP research
• It provides a rich compilation framework

– Parameterized ILP architecture (HPL-PD)
– Machine description language
– Single intermediate program representation

• provides mechanism for representing wide range of program
information

– Cycle-level execution simulation
• provides run-time information for profile-driven compilation

Trimaran Tutorial

25

More reasons…

• The framework is populated with a large number
of existing compilation modules
– provides leverage for new compiler research
– supports meaningful experimentation, rather than

simply running toy programs.
– Full compilation and execution path already exists

• There’s a commitment on our part to releasing a
robust, tested, and documented software
system.

Trimaran Tutorial

26

Case Study

• Here’s a data point on the usability of
Trimaran:
– We implemented a sophisticated region-

based register allocator in the back end.
– 2 person-months implementation time + 1

person-month testing and debugging
• Once familiar with infrastructure (several more

months)
• Very short development time for a real register

allocator in a serious compiler.

Trimaran Tutorial

27

The Trimaran Tutorial

• The full Trimaran Tutorial has been given
at:
– IEEE Conference on Parallel Architectures

and Compiling Techniques (PACT), Paris,
October 1998.

– IEEE Symposium on Microarchitecture
(MICRO-31), Dallas, December 1998

– ACM SIGPLAN Symposium on Programming
Language Design and Implementation
(PLDI’99), Atlanta, May 1999.

Trimaran Tutorial

28

Since the Release...

• The Trimaran Web Site has been visited more
than 5000 times.

• The Trimaran system has been downloaded to
over 900 sites.
– The 50mb system is currently ported to HP-UX.
– A Linux port is due in mid-June.
– A Solaris port is planned.
– Simulator is being improved to provide measurements

of cache performance.

• Embodies over 100 person-years of work.

