
46

Trimaran Tutorial

An Overview of
the IMPACT Module and

Its Optimization Suite



Trimaran Tutorial

47

System Organization

A compiler researcher’s view of the infrastructure:

C program

IMPACT

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

Simulator

Execution
Statistics

Elcor

To
IR

Modulo 
Scheduling

Acyclic 
Scheduling

Dependence
Graph 

Construction

Region-based
Register Allocation

Post-pass 
Scheduling. . .

Machine
Description

Transformed
C program



Trimaran Tutorial

48

New Benchmark Framework

• “bench_info” framework features
– how to compile and run the benchmark
– copy of the benchmark’s source (optional)
– robust, complete, and user-friendly set of tools

–test_bench_info script validates info provided

– plug-in-play support
–user configurable search paths for bench info
–no script modifications needed to add benchmark

– multiple input support
– tutorial with walk-through of usage

–…/impact/tutorials/bench_info_tutorial



Trimaran Tutorial

49

K&R/ANSI-C Parser
• Built upon EDG C parser

– Solid but persnickety about C language spec
–May need to modify benchmark source to match spec

– Utilizes native compiler’s header files (in most
cases), and libraries

– We may only distribute binaries and source diffs
–Unmodified source available via free educational license

from EDG (see web site for source diffs and instructions)
–Modified to generate our source-level intermediate rep.

• Compile all the available source together
– Don’t link in libraries if have source for libraries!
– Profiler and source analysis tools need everything



Trimaran Tutorial

50

Renaming and Flattening

• Renaming affects all global static variable and
function names
– Changes to allow global non-static scope

• Flattening transforms all complex expressions
into simple expressions
– Adds temporary variables when necessary

• Operates at the C source-file level



Trimaran Tutorial

51

Control-Flow Profiling

• Straightforward control-arc profiler
– Generates execution and branch weights
– 2-3 times slower than uninstrumented executable

• Reverse generates instrumented C code
– May also use rest of IMPACT/Elcor path instead

• Currently annotates in only one run’s data
– Multiple-input support will be released soon

• Required step when using IMPACT module!
– 1.5X to 4.1X faster code with profile info



Trimaran Tutorial

52

C Source File Splitting

• Breaks source into one function per file
– Preparation step for function inlining
– Renames structure/union tags when necessary
– Moves all global variables into one file data.pcs
– Moves all structure definitions into struct.pch
– Generates every function prototype into extern.pch

–All functions are now explicitly prototyped

• Operates on the entire program



Trimaran Tutorial

53

Function Inlining

• Profile-based global function inlining
– Currently inlines most important call sites until

reach 20% static code growth (configurable)
– Currently does not inline calls via function pointers

• Significantly improves benchmark performance
– Expands optimization and scheduling scope
– 1.5X to 2.2X faster code with inlining



Trimaran Tutorial

54

Reverse Generation of C

• Typically only used by control-flow profiler
– May reverse generate C after any point in

frontend processing (including after inlining)
– Profiler generates instrumented C code

–Builds profiling executable with native compiler



Trimaran Tutorial

55

Classical Optimizations
• Based on “Red Dragon Book” optimizations

– Applied both at basic-block and function level
– Applied iteratively to maximize performance

• Will generate non-trapping operations
– Typically invariant code removal causes generation
– Controlled by Lglobal param. non_excepting_ops

• Currently utilizes “unsafe flags” for memory
disambiguation
– For example: different data types independent
– Some benchmark-specific tuning required (e.g. go)
– Good, but source-level analysis better (Fall’ 99)



Trimaran Tutorial

56

Code Layout

• Intra-function layout based on profile info
– Arrange code so branches usually fall-thru
– Most-likely trace placed at beginning of function
– Then second most-likely trace, and so on
– Unexercised code placed at end of function

• Potential benefits
– Reduces jumps in frequently executed code
– Executed code usually fits better in Icache
– May result in fewer branch entries in BTB



Trimaran Tutorial

57

Superblock Formation

• Creates single-entry/multiple-exit blocks
– Based on profile information
– Increases scheduling and optimization scope
– Tail-duplication utilized to avoid bookkeeping

code required by trace scheduling techniques
–Also can expose more optimization opportunities

• After superblock formation, profile information
will no longer be completely accurate



Trimaran Tutorial

58

Hyperblock Formation

• Creates single-entry/multiple-exit blocks from
multiple paths using predication
– Increases scheduling/optimization opportunities
– Converts control-flow into data-flow optimizations
– Can remove branch mispredictions, but not the

only benefit
– Superblocks still used when appropriate

• Predicted code first-class citizen in IMPACT
– Dataflow, predicate analysis, classical

optimizations, ILP optimizations, etc.



Trimaran Tutorial

59

ILP Transformations
• Enhance and expose ILP

– Loop unrolling, register renaming, renaming with
copy, induction and accumulator variable
expansion, operation migration, predicate
promotion, predicate-based branch combining, …

• Usually increases dynamic # of operations
– Raw IPC can be misleading, use speedup, etc.

• Accuracy of profile information further reduced
• Can significantly improve performance

– 1.2X to 3.2X faster code with superblock/
hyperblock formation and ILP transformations


