
60

Trimaran Tutorial

HPL-PD
A Parameterized Research

Architecture

61

Trimaran Tutorial

HPL-PD

HPL-PD is a parameterized ILP architecture

• It serves as a vehicle for processor architecture and compiler
optimization research.

• It admits both EPIC and superscalar implementations

• The HPL-PD parameter space includes:

– number and types of functional units

– number and types of registers (in register files)

– width of the instruction word (for EPIC)

– instruction latencies

62

Trimaran Tutorial

Novel Features of HPL-PD

HPL-PD has a number of interesting architectural
features, including:

– Support for speculative execution

• data speculation (run-time address disambiguation)

• control speculation (eager execution)

– Predicated (guarded) execution

• conditionally enable/disable instructions

– Memory system

• compiler-visible cache hierarchy

• serial behavior of parallel reads/writes

63

Trimaran Tutorial

Novel Features (cont)
– Branch architecture

• architecturally visible separation of fetch and execute of
branch target

– Unusual simultaneous write semantics

• hardware allows multiple simultaneous writes to registers

– Efficient boolean reduction support

• parallel evaluation of multi-term conjunction/disjunction

– Software loop pipelining support

• rotating registers for efficient software pipelining of tight inner
loops

• branch instructions with loop support (shifting the rotating
register window, etc)

64

Trimaran Tutorial

The Scheduling Model
• HPL-PD supports either the Equals or Less Than or

Equals model.

• Less than or Equals Model (LTE)

– Destination register of an operation is reserved from the start of
the operation until the value is delivered.

• Model used by all current machines

• Equals model (EQ)

– Value is delivered to the destination register at exactly the time
determined by the instruction latency (according to the
architectural specification).

– Prior to that, the register can be used by other operations.

– Reduces register pressure.

65

Trimaran Tutorial

Scheduling Models

• Less Than or Equals (LTE) model
t0 r1 = Load a1

t0+l0-1
t0+l0 use r1

• Equals (EQ) model
t0 r1 = Load a1

t0+l0-1
t0+l0 use r1

r1 not available for use
(value may arrive at any time)

r1 available

Value arrives here

66

Trimaran Tutorial

LTE Vs EQ Model (example)

EQ Model
r1 = L r0
r1 = DIV r2, 15
r1 = ADD r3, 5

S r1
S r1

r1 = ADD r1, 7

LTE Model
r1 = L r0
r2 = DIV r3, 15
r4 = ADD r3, 5

S r4
S r2

r1 = ADD r1, 7

Before Register Allocation
v1 = L v0 ; latency = 4
v2 = DIV v3, 15 ; latency = 2
v4 = ADD v5, 5 ; latency = 0

S v4
S v2

v1 = ADD v1, 7

Load
result

DIV
result

ADD
result

67

Trimaran Tutorial

HPL-PD Register Files
The following classes of register files can currently be
specified in the HPL-PD architecture

– General purpose (GPR)
• 32 bits + 1-bit speculative tag

• 32-bit signed and unsigned integers

– Floating point (FPR)
• 64 bits + 1-bit speculative tag
• IEEE compliant 32-bit single precision or 64-bit double precision

floating point numbers

– Predicate (PR)
• 1 bits + 1-bit speculative tag

• 1-bit boolean values, used for predicated execution

– Branch target (BTR)
• 32-bit address + 1-bit static prediction + 1-bit speculative tag

68

Trimaran Tutorial

Register Files (cont)

• Control Registers (CR)
– 32 bits

– PC - program counter

– PSW - program status word

– RRB - rotating register base

– LC - loop counter

– ESC - epilog stage counter (for software pipelined loops)

– PV(i,j) - 32 1-bit predicate register values (i=file, j=group of 32)

– IT(i,j) - 32 1-bit speculative tags
 FT(i,j) (I=integer, F=floating point, P=predicate)
 PT(i,j) (i=file, j=group of 32)

– BTRL(i,j) - high and low portions of a branch target register
 BTRH(i,j) (i=file, j=register number)

69

Trimaran Tutorial

Register Files (cont)
• Each register file may have a static and a rotating portion
• The ith static register in file F is named Fi
• The ith rotating register in file F is named F[i].

– Indexed off the RRB, the rotating register base register.

• F [i] ≡ FR [(RRB + i) % size(FR)]

FR

FS

F

size(FR)RRB

70

Trimaran Tutorial

Control Speculation Support
Control speculation is the execution of instructions that may not have

been executed in unoptimized code.

– Generally occurs due to code motion across conditional branches

• e.g. an instruction in one branch is moved above the conditional jump.

– these instructions are said to be speculative

– this transformation is generally safe if the effect of the speculative
instruction can be ignored or undone if the other branch is taken

– However, if a speculative instruction causes an exception, the exception
should not be raised if the other branch is taken.

• HPL-PD provides hardware support for this.

71

Trimaran Tutorial

Speculative Operations

• Speculative operations are written identically to their
non-speculative counterparts,but with an “E” appended
to the operation name.
– e.g. DIVE ADDE PBRRE

• If an exceptional condition occurs during a speculative
operation, the exception is not raised.
– A bit is set in the result register to indicate that such a condition

occurred.

– More information (e.g. type of condition, IP of instruction) is

stored.

• not currently specified how or where.

72

Trimaran Tutorial

Speculative Operations (cont)

The behavior of speculative operations is as follows:

– if none of the operand registers have their speculative bits set,
the operation proceeds normally. If an exceptional condition
occurs, the speculative bit in the result register is set, but no
exception is raised.

– if the speculative bit of any operand register is set, then the
operation simply sets the speculative bit of the result register.

If a non-speculative operation has an operand with its
speculative bit set, or if an exceptional condition occurs
during the operation, an exception is raised.

73

Trimaran Tutorial

Speculative Operations (example)

Here is an optimization that uses speculative instructions:

– The effect of the DIV latency is reduced.

– If a divide-by-zero occurs, an exception will be raised by ADD.

 . . .
v1 = DIV v1,v2
v3 = ADD v1,5
 . . .

. . .

. . .

 . . .
v3 = ADD v1,5
 . . .

 . . .
v1 = DIVE v1,v2
 . . .

. . .

74

Trimaran Tutorial

Predication in HPL-PD

In HPL-PD, most operations can be predicated

– they can have an extra operand that is a one-bit
predicate register.

 r2 = ADD.W r1,r3 if p2

– if the predicate register contains 0, the operation is
not performed

– the values of predicate registers are typically set by
“compare-to-predicate” operations

 p1 = CMPP.<= r4,r5

75

Trimaran Tutorial

Uses of Predication
Predication, in its simplest form, is used with

– if-conversion

A use of predication is to aid code motion by
instruction scheduler.

– e.g. hyperblocks

With more complex compare-to-predicate
operations, we get

– height reduction of control dependences

76

Trimaran Tutorial

If-conversion
If-conversion replaces conditional branches with predicated operations.

– Those instructions in branches not taken are disabled by predication.

For example, the code generated for:
if (a < b)

c = a;
else

c = b;
if (d < e)

f = d;
else

f = e;

might be the two EPIC instructions:

P1 = CMPP.< a,b P2 = CMPP.>= a,b P3 = CMPP.< d,e P4 = CMPP.>= d,e

 c = a if p1 c = b if p2 F = d if p3 F = e if p4

77

Trimaran Tutorial

Compare-to-predicate instructions

In previous slide, there were two pairs of almost identical
instructions

– just computing complement of each other

 HPL-PD provides two-output CMPP instructions

p1,p2 = CMPP.W.<.UN.UC r1,r2

– U means unconditional, N means normal, C means complement

– There are other possibilities (conditional, or, and)

78

Trimaran Tutorial

If-conversion, revisited
Thus, using two-output CMPP instructions, the code
generated for:

if (a < b)
c = a;

else
c = b;

if (d < e)
f = d;

else
f = e;

might be instead be:

p1,p2 = CMPP.W.<.UN.UC a,b p3,p4 = CMPP.W.<.UN.UC d,e

c = a if p1 c = b if p2 F = d if p3 F = e if p4

Only two CMPP operations,
occupying less of the EPIC
instruction.

79

Trimaran Tutorial

Hyperblock Formation
• In hyperblock formation, if-conversion is used to form larger blocks

of operations than the usual basic blocks
– tail duplication used to remove some incoming edges in middle of block

– if-conversion applied after tail duplication
– larger blocks provide a greater opportunity for code motion to increase

ILP.

Basic Blocks
Tail Duplication If-conversion to

form hyperblock

}Predicated Operations

80

Trimaran Tutorial

Hyperblock Example (hyper.c)

int main()
{
int i, a, b, c;
a = b = c = 0;
for (i=0; i<200; i++)
{

a+=1;
if (i%10==0) continue;
b+=2;
if (i%10==5) continue;
c+=3;

}
printf ("a:%d b:%d c:%d\n", a, b, c);
exit (0);

}

81

Trimaran Tutorial

Hyper.c Control Flow (w/o Hyperblocks)

Image generated
by Trimaran GUI

82

Trimaran Tutorial

Hyper.c Control Flow (w/ Hyperblocks)

Image generated
by Trimaran GUI

83

Trimaran Tutorial

Hyperblock Performance Comparison

• Although the total number of operations executed increases, so
does the parallelism.

with hyperblock formation

without hyperblock formation

Total number
of operations
executed

Average number
of operations
executed per
cycle

84

Trimaran Tutorial

Hyperblock Performance Comparison (cont)

• Execution time is reduced

with hyperblock formation

without hyperblock formation

85

Trimaran Tutorial

The HPL-PD Memory Hierarchy

HPL-PD’s memory hierarchy is unusual in that it is visible
to the compiler.

– In store instructions, compiler can specify in which cache the
data should be placed.

– In load instructions, the compiler can specify in which cache the
data is expected to be found and in which cache the data should
be left.

This supports static scheduling of load/store operations
with reasonable expectations that the assumed latencies
will be correct.

86

Trimaran Tutorial

Memory Hierarchy

Data prefetch
cache

CPU/regs

First-level
cache

Second-level
cache

Main Memory

C1

C2

C3

V1

data-prefetch cache

• Independent of the first-
level cache

• Used to store large
amounts of cache-
polluting data

• Doesn’t require
sophisticated cache-
replacement mechanism

87

Trimaran Tutorial

Load/Store Instructions

Sample Load Instruction
r1 = L.W.C2.V1 r2

Sample Store Instruction
S.W.C1 r2,r3

Target Cache

Source Cache Operand register
(contains address)

Contains address

Target Cache
Contains value to be stored

88

Trimaran Tutorial

Source cache specifiers
On a load, the data might not be in the source cache
specified in the instruction.

– Actual latency might be greater or less than expected.

If data is available sooner than expected, its arrival is
delayed until the expected time.

If the latency is greater than expected, the entire pipeline is
stalled.

– Every functional unit sits idle.

89

Trimaran Tutorial

Run-time Memory Disambiguation

Here’s a desirable optimization (due to long load latencies):

However, this optimization is not valid if the load and store
reference the same location

– i.e. if r2 and r3 contain the same address.

– this cannot be determined at compile time

HPL-PD solves this by providing run-time memory
disambiguation.

. . .
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = L r2
. . .

S r3, 4
 r1 = ADD r1,7

90

Trimaran Tutorial

Run-time Memory Disambiguation (cont)

HPL-PD provides two special instructions that can replace
a single load instruction:

r1 = LDS r2 ; speculative load

– initiates a load like a normal load instruction. A log entry can

made in a table to store the memory location

r1 = LDV r2 ; load verify

– checks to see if a store to the memory location has occurred
since the LDS.

– if so, the new load is issued and the pipeline stalls. Otherwise,

it’s a no-op.

91

Trimaran Tutorial

Run-time Memory Disambiguation (cont)

The previous optimization becomes

There is also a BRDV(branch-on-data-verify) for branching to

compensation code if a store has occurred since the LDS to the same

memory location.

. . .
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = LDS r2
. . .

S r3, 4
r1 = LDV r2
r1 = ADD r1,7

92

Trimaran Tutorial

The HPL-PD Branch Architecture

HPL-PD replaces conventional branch operations
with two operations:

– Prepare-to-Branch operations (PBRR, etc)
• loads target address into a branch target register

• initiates prefetch of the branch target instruction to minimize
branch delay

• contains field specifying whether the branch is likely to be
taken.

• must precede any branch instruction

– Branch operations (BRU, etc)
• branches to address contained in a branch target register

• there are branch instructions for function calls, loops, and
software pipelining.

93

Trimaran Tutorial

Branches (example)
LC = Mov N
b1 = PBRR Loop,1

Loop:
r = L s
r = ADD r,M

S s,r
s = Add s,4
BRLC b1

If LC > 0, decrement LC and
jump to address in b1.

Store address of Loop in b1.
The second operand is a hint
that the branch will be taken.

94

Trimaran Tutorial

Other Branch Instructions

BRU b3 if p3

• unconditional branch

BRCT b4,p2 if p4

• branch on condition (in predicate register) true

b2 = BRL b3

• branch to address in b3, save return address in b2

BRF and BRW

• branch instructions to support software pipelining...

95

Trimaran Tutorial

Software Pipelining Support

Software Pipelining is a technique for exploiting
parallelism across iterations of a loop.

– Iterations are overlaid

HPL-PD’s rotating registers support a form of
software pipelining called Modulo Scheduling

– Rotating registers provide automatic register
renaming across iterations

– The rotating base register, RRB, is decremented by
the BRLC instruction.

• Thus, r[i] in one iteration is referenced as r[i+1] in the next
iteration.

96

Trimaran Tutorial

Modulo Scheduling (example)

Initial C code:

Non-pipelined code (r and s are GPR registers)

for(i = 0; i < N; i++)
 a[i] += M;

LC = MOV N-1
s = MOV a
b1 = PBRR Loop,1

Loop:
r = L s
r = ADD r,M

S s,r
s = Add s,4

BRLC b1

97

Trimaran Tutorial

Modulo Scheduling (cont)

With rotating registers, we can overlay iterations of
the loop.

– e.g. r[j] in one iteration was r[j-1] in the previous
iteration, r[j-2] in the iteration before that, and so on.

– thus a single EPIC instruction could conceivably
contain an operation from each of the n previous
iterations.

• where n is the size of the rotating portion of a register file

98

Trimaran Tutorial

Modulo Scheduling (cont)

We can overlay the iterations:

and take a slice to be executed as a single EPIC
instruction:

s[0] = Add s[1],4 ; increment i
S s[4],r[3] ; store a[i-3]

r[2] = Add r[2],M ; a[i-2]= a[i-2]+M
r[0] = L s[1] ; load a[i]

r = L s

r = Add r,M

S s,r
s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r4 = Add r,M
S s,r

s = Add s,4

99

Trimaran Tutorial

Consider a graphical view of the overlay of iterations:

Only the shaded part, the loop kernel, involves executing
the full width of the EPIC instruction.

– The loop prolog and epilog contain only a subset of the
instructions.
• “ramp up” and “ramp down” of the parallelism.

Loop Prolog and Epilog

Epilog

Kernel

Prolog

100

Trimaran Tutorial

Prolog and Epilog (cont)
The prolog can be generated as code outside the loop by
the compiler:

The epilog is handled similarly.

b1 = PBRR Loop, 1
s[4] = Mov a
. . .
s[1] = Mov a+12
r[3] = L s[4]
r[2] = L s[3]
r[3] = Add r[3],M
r[1] = L s[2]

Loop: s[0] = Add s[1],4 ; increment i
S s[4],r[3] ; store a[i-3]

r[2] = Add r[2],M ; a[i-2]= a[i-2]+M
r[0] = L s[1] ; load a[i]
 BRF.B.F.F b1

101

Trimaran Tutorial

Modulo Scheduling w/ Predication

You can also view the overlay of iterations as:

where the loop kernel is executed in every iteration, but with the undesired
instructions disabled by predication.

– Supported by rotating predicate registers.

Disabled by predication

102

Trimaran Tutorial

Modulo Scheduling w/ Predication

Notice that you now need N + (s -1) iterations, where s is
the length of each original iteration.

– “ramp down” requires those s-1 iterations, with an additional step
being disabled each time.

– The register ESC (epilog stage count) is used to hold this extra
count.

– BRF.B.B.F behaves as follows:

• While LC>0, BRF.B.B.F decrements LC and RRB and writes a 1
into P[0] and branches. This for the Prolog and Kernel.

• If LC = 0, then while ESC>0, BRF.B.B.F decrements LC and RRB
and writes a 0 into P[0] and branches. This is for the Epilog.

103

Trimaran Tutorial

Modulo Scheduling w/Predication

Here’s the full loop using modulo scheduling, predicated
operations, and the ESC register.

s[1] = MOV a
LC = MOV N-1
ESC = MOV 4
b1 = PBRR Loop,1

Loop:
 s[0] = ADD s[1],4 if p[0]

 S s[4],r[3] if p[3]
 r[2] = ADD r[2],M if p[2]
 r[0] = L s[1] if p[0]

BRF.B.B.F b1

104

Trimaran Tutorial

Modulo Scheduling Performance
(matmult)

void matmult()
{

int i,j,k;
double s1;
for (i=0 ; i < NUM ; i++)

for (j=0 ; j < NUM ; j++) {
s1 = 0.0;
for (k=0; k < NUM ; k++)

s1 += a[i][k]*b[k][j];
c[i][j] = s1;
printf("c[%d][%d] = %f\n", i, j,s1);

}
}

105

Trimaran Tutorial

Modulo Scheduling Performance
(matmult)

• Speedup of 2.2 due to Modulo scheduling

Without modulo scheduling
80608 cycles

With modulo scheduling
35008 cycles

Total number of cycles

Matmult

106

Trimaran Tutorial

Modulo Scheduling Example (matmult)

Without modulo scheduling
ILP factor = 1.37

With modulo scheduling
ILP factor = 3.0

ILP Factor:
Average number of
ops per cycle

Matmult

107

Trimaran Tutorial

Summary
• HPL-PD is a flexible ILP architecture

– encompassing both superscalar and EPIC machine classes

• HPL-PD is a very interesting target for compiler
optimizations

– many useful, novel features

– increased opportunities for instruction scheduling

– predication, speculative instructions

– register allocation

– EQ model, if desired

– and other optimizations

