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The Elcor IntermediateThe Elcor Intermediate
RepresentationRepresentation
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Factors motivating the design

• Global scheduling is key to exploiting ILP
– We are moving towards bigger and complex regions

• Frequency-based regions have more complex
structure than traditional structure-based regions
(e.g., intervals, SESE)
– Even a trace is multiple-entry multiple-exit region

• Many of the ILP enhancing techniques, e.g., height
reduction, rely on estimates of height and resource
usage (abstract scheduling)
– Such estimates may be helpful even in earlier phases

• Analysis like memory disambiguation are expensive
– Need to represent and maintain their results accurately
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Factors (cont.)

• Flexibility in phase ordering
– because we don't fully understand the right phase order

• Flexibility and ability to grow
– In many cases, we don't fully understand the requirements

– IR highly optimized for a specific purpose may not be the
right one

– Put general mechanism to support various policies

– Well defined interfaces to modules and encapsulation

• Uniformity
– Easy to build software, modify and grow
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IR Features

• Multi-state IR

• Provides mechanism for
representing

– Traditional control flow
graph

– Control dependences

– Data dependences for both
registers and memory in various
forms

– Various forms of register usage –
single assignment, multiple
assignments

– Expanded virtual registers (EVRs)

– Predicated execution

• Data section

– Global symbols, arrays, etc.

• Registers carry values, edges
represent dependences

• A uniform, edge-based
representation of control flow
and data dependences

• Supports threading of data
dependences ala dependence
flow graphs

• Hierarchical non-overlapping
region structure (a tree)
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Internal vs. Textual Representation

• Each component of the graph data structure is a
C++ object
– All modules of the Elcor use this IR

– Optimization are simply IR-to-IR transformations

• There is an ASCII intermediate representation,
called Rebel.
– Phases of Elcor may communicate using Rebel.

– A reader procedure is provided that reads Rebel and
constructs the corresponding internal program
representation.

– A writer procedure is provided for generating Rebel from
the internal representation.
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Program Representation

A program unit is represented by

1) A graph of operations connected by edges
– Control flow is represented explicitly and at the operation level

2) A region structure over the operation graph (a tree)
– The root of the tree is the program unit, e.g. a procedure
– The leaf nodes of the tree are operations
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Control Flow Viewer



Trimaran Tutorial

140

Control Flow Viewer
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• Operation graph can represent both control flow
and data dependences

Operation graph with
control flow edges

Operation graph with control flow and
threaded flow dependence edges for y

y = s + 1

y = 3 / yy = 2 * y

p = y == r

Branch if p

y = s + 1

y = s + 1

y = 3 / yy = 2 * y

p = y == r

Branch if p

y = s + 1
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Data Dependency Viewer
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Operation graph elements

• Op(eration) class

• Operand class

• Edge class
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Op class

• Represents an operation
– Machine operation
– Compiler operations (e.g.,CONTROL_MERGE, PRED_CLEAR)

• Has source and destination operands including guarding
predicate (their number is determined by MDES)

dest1, ..., destm = opcode(src1, ..., srcn) if p

• May have implicit sources and destinations
– e.g., parameter passing registers for BRL

• Memory dependence "sources" and "destinations"
– Memory dependences are encoded as "def" and "use" of special

variables
<$a> r3 = load (r4)

store(r1, r2) <$a, $b, ...>

– Simplifies dependence graph construction

• Set of input edges and set of output edges
• Schedule time, latency queries for sources/destinations
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Operand Class

• Registers
– Unassigned or assigned
– Can be unbound or bound to static or rotating register files.

• Macro registers
– Registers reserved by compiler or runtime system. Parameter

passing registers, stack pointer, frame pointer, loop counter,
epilogue stage counter etc.

• Memory registers
– Used to encode memory dependence edges

• Register names
– Used as operands to REMAP operation for EVR’s

• Local branch targets
– Basic block ID’s that appear as branch targets

• Literals
– Integer, float, double, predicate, string, label

• Undefined
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Instruction Schedule Viewer
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EVR’s

• EVRs allow multiple values from a
sequence of assignments to be live
at the same time

• An EVR is a linearly ordered set of
VRs

– Elements are referenced using the
notation t[0], t[1], etc.

– A special remap operation to "shift"
reference coordinates

t = 0;    // t means t[0]

remap(t); // Previous value
        // of t is now t[1]

t = 1;

remap (t);

t = t[1] + t[2] // t = 0 + 1

• EVRs allow

– Accurate representation of value flow
across zero or more iterations of a
loop

– Representation of results of analysis
and transformation without unrolling
or unnecessary copies

E.g., The use of the value loaded in
previous previous iteration as t[2]

– Representation in dynamic single
assignment form to eliminate inter-
iteration anti- and output
dependences

• Use of EVRs in IR doesn’t imply use
of rotating registers in hardware

– Code can be unrolled at a later stage
if rotating registers are not supported
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Mem_vrMem_vr

RegReg

VR_nameVR_name

Macro_regMacro_reg

Int_litInt_lit

Pred_litPred_lit

Float_litFloat_lit

Double_litDouble_lit

String_litString_lit

Label_litLabel_lit

Cb_operandCb_operand
UndefinedUndefined

Base_operandBase_operand

Operand

Operand Class Hierarchy

Operand class is a wrapper for all operand types.
– Provides Boolean methods for class type testing

– Provides access methods to class specific fields

– Provides comparison operators

– Manages symbol table
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Edge Class

• Edges Represents dependence constraints between
operations

• Edges do not represent value-flow like data flow graphs

• Edge types:
– Control (sequential control flow, control dependence)
– Flow, anti and output dependences on registers

– Flow, anti and output memory dependences classified as
"certain" or "maybe"

• An edge has pointers to source and destination ops

• An edge also contains more detailed reason for dependence

– Represented in terms of "Port" for source and destination
operands

– e.g., register flow edge from DEST1 of op1 to SRC2 of op2

• Latency setting and querying functions
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Edge

Reg_anti

Mem

Reg_outReg_flow

Control

Edge Class Hierarchy

• The hierarchy is based on how latency for an edge
is computed.
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Region Structure
• Region structure over a program is a tree structure

– Leaves of the tree are Operations

• A region is defined by
– Operations contained in the region

– Set of control flow edges that enter or exit the region

– Set of entry and exit operations (mostly redundant)

• All entry operations are CONTROL_MERGE
operation

• All exit operations are branch operations
– There is a DUMMY_BRANCH operation if region exit is

fallthrough

• Regions are used to set scope for analysis,
optimization, scheduling, register allocation etc.
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Region

BB HB LoopBody Procedure

OpCompound_region

Region Class Hierarchy

• Region class is an abstract base class.
• Compound regions can contain other regions in the

region tree.
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Region Representation

Procedure region

Compound region

BB region 

y = s + 1

y = 2 * y

p = y == r

Branch if p

y = s + 1

y = 3 / y

E1 E2

E3

E4

E5

Op1

Op2

Op3

Op4

Op5

Op6

Entry edges: E1, E2, E4
Exit edges: E3,E5
Entry ops: Op1, Op3
Exit ops:Op2, Op4

Parent: R1
Subregions: List of all Ops in R2

R1

R2

R3

Other regions 
in procedure
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Region Hierarchy Viewer
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Region Hierarchy Viewer
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Compound Regions

• There is no explicit representation of control flow
between compound regions
– In a region hierarchy, successor or predecessor of a

compound region is not unique.

• If we consider a “cut” of region hierarchy tree, we
can construct a control flow graph of the regions in
the cut.

E.g., if in a region hierarchy every operation is subregion of
a basicblock, we can find a cut containing only basic
blocks therefore a basic block control flow graph can be
constructed. 

Every exit edge of a basic block is an entry edge of some
basic block
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Practical Considerations

• Operation graph has CONTROL_MERGE and
DUMMY_BRANCH operations inserted in it to
construct a basic-block only covering of the
operation graph at all times

• Procedures don’t have entry/exit control flow edges.
• Some important region hierarchies are

– Single entry/multiple exit compound region with a tiling of
basic-blocks and hyperblocks (Region based analysis).

– Single entry/multiple exit compound region with a tiling of
basic-blocks (Control flow transformations).

– Hyperblock with only operations in it (Acyclic scheduling).

– LoopBody with only operations in it (Modulo scheduling)
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void check_region_hierarchy(Region* r)

{

// Iterator over subregions 

   Region_subregions subreg_iter;

if (r->is_op()) return;

Compound_region* cr = (Compound_region*) r;

for(subreg_iter(cr) ; subreg_iter!=0 ; subreg_iter++) {

Region* current_subregion = (*subreg_iter);

assert(current_subregion->parent() == r);

check_region_hierarchy(current_subregion);

   }

}

Using the IR iterators

Current item, please

Move to next

Initialize iterator

We aren’t done, are we?

Elcor provides a collection of iterators to walk data structures
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 Attributes

• The intermediate representation allows annotations
on Regions and Edges
– Used for module specific purposes

– Used when the information is sparse

• There are two kinds of attributes
– Heavy weight

– Type safe
– Can be represented in ASCII form of IR (can be printed and

parsed in)
– If the object it is attached to is deleted the attributes are deleted

– Light weight
– Stored and retrieved using string keys
– Not type safe
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Rebel

• Rebel is the ASCII representation of the IR
• It is human-readable

– Can be parsed by a recursive descent parser

• It has the same structure and elements as the data
structures of IR
– region based

– sufficiently powerful to express program properties at
various stages of compilation

– before/after scheduling
– before/after register allocation
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The Rebel Reader/Writer

• For reading Rebel, an input  procedure is provided for each
component type:
– Region *region(IR_instream&);
– Op *op(IR_instream&);

– BB*bb(IR_instream&)
– Edge *edge(IR_instream&);
– . . .

• These either  return a pointer to the object, if it’s of the
appropriate type, or NULL.

• The main driver routine, which reads the first lexical token and
dispatches the appropriate reader procedure, is
– El_Input_Token ir_read(IR_instream& in)

• For printing out a top-level object (i.e. a procedure) along with
dictionaries of all edges and attributes, there is the top-level
procedure
– ir_write(IR_outstream& out, Region* r)
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(
                                              )s_opcode(addw.0) attr(lc ^52) flags(sched)

Region
Type

Region
Number

Operation
Name Operation

Destinations

op 7 ADD_W [br<11:i gpr 11>][br<27:i gpr 14> i<1>] p<t> s_time(3)

Operation
Sources

Operation
Predicate

Operation
Scheduling

Time

Operation
Opcode (link
to HMDES)

Operation
Attributes Operation

Flags

Operation in Rebel

Here is how an operation region looks in Rebel
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• A register operand (in an Op region)  looks like:

• The register status is r  if it’s a virtual register  or  br
if it is an allocated register.

27 i :gpr 14 >

Register
Status

br <

Data
Type

Register
File

Physical
Register
Number

Virtual
Register

Index

Operands in Rebel
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bb 1 (
  weight(0)
  entry_ops(44) exit_ops(45)
  entry_edges() exit_edges(ctrl ^7)
  flags(prologue sched)  attr(lc ^32)
  subregions(
    op 44 (C_MERGE [] [] s_time(0)
      s_opcode(control_merge)
      in_edges() flags(sched))
    .
    .
    op 45 (DUMMY_BR [] [] s_time(0)
      s_opcode(dummy_branch)
      out(op-46(0)) flags(sched))
  )
)

Compound Region in Rebel

• Here is a Basic Block region.
– The other compound regions are similar.
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Summary

• Elcor Intermediate Representation is
– Graph based with explicit representation of dependence

and control flow

– Region based

• There are two forms of the intermediate
representation that a researcher can use.
– Internal representation

– C++ object based
– Used by all Elcor modules

– Textual representation (Rebel)
– Complete program representation
– Easily parsed, readable


