
Trimaran Tutorial

129

The Elcor IntermediateThe Elcor Intermediate
RepresentationRepresentation

Trimaran Tutorial

130Traditional ILP compiler
phase diagram

Global opt.

Region picking

Regional memory
disambiguation &
Graph building

Region 1 Region 2 Region n
Compiler
 phases

Program region being compiled

n-tuple IR

Regional sched.
& Reg. alloc

Code replication

Graph IR

n-tuple IR

Trimaran Tutorial

131A region-based backend phase
diagram

Region picking

Regional memory
disambiguation &
graph building

Regional sched.
 & Reg. alloc

Code replication

Graph IR

Global opt.(may be)

Region 1 Region 2 Region n
Compiler
 phases

Program region being compiled

Rich IR

Global flow &
Symbolic analysis

Regional opt.

Rich IR

ILP enhancing
transformation

Trimaran Tutorial

132

Factors motivating the design

• Global scheduling is key to exploiting ILP
– We are moving towards bigger and complex regions

• Frequency-based regions have more complex
structure than traditional structure-based regions
(e.g., intervals, SESE)
– Even a trace is multiple-entry multiple-exit region

• Many of the ILP enhancing techniques, e.g., height
reduction, rely on estimates of height and resource
usage (abstract scheduling)
– Such estimates may be helpful even in earlier phases

• Analysis like memory disambiguation are expensive
– Need to represent and maintain their results accurately

Trimaran Tutorial

133

Factors (cont.)

• Flexibility in phase ordering
– because we don't fully understand the right phase order

• Flexibility and ability to grow
– In many cases, we don't fully understand the requirements

– IR highly optimized for a specific purpose may not be the
right one

– Put general mechanism to support various policies

– Well defined interfaces to modules and encapsulation

• Uniformity
– Easy to build software, modify and grow

Trimaran Tutorial

134

IR Features

• Multi-state IR

• Provides mechanism for
representing

– Traditional control flow
graph

– Control dependences

– Data dependences for both
registers and memory in various
forms

– Various forms of register usage –
single assignment, multiple
assignments

– Expanded virtual registers (EVRs)

– Predicated execution

• Data section

– Global symbols, arrays, etc.

• Registers carry values, edges
represent dependences

• A uniform, edge-based
representation of control flow
and data dependences

• Supports threading of data
dependences ala dependence
flow graphs

• Hierarchical non-overlapping
region structure (a tree)

Trimaran Tutorial

135

Internal vs. Textual Representation

• Each component of the graph data structure is a
C++ object
– All modules of the Elcor use this IR

– Optimization are simply IR-to-IR transformations

• There is an ASCII intermediate representation,
called Rebel.
– Phases of Elcor may communicate using Rebel.

– A reader procedure is provided that reads Rebel and
constructs the corresponding internal program
representation.

– A writer procedure is provided for generating Rebel from
the internal representation.

Trimaran Tutorial

136

Program Representation

A program unit is represented by

1) A graph of operations connected by edges
– Control flow is represented explicitly and at the operation level

2) A region structure over the operation graph (a tree)
– The root of the tree is the program unit, e.g. a procedure
– The leaf nodes of the tree are operations

Trimaran Tutorial

137An example: Representing
traditional CFG

y = s+1
p = y == r
Branch if p

y = 2 * y y = 3 / y

z = y+1

Operation Graph with
control flow edgesRegion Structure

y = s + 1

y = 3 / yy = 2 * y

PU region

BB region

BB region

p = y == r

Branch if p

y = s + 1

BB region

BB region

Traditional CFG

Representation in Elcor IR

Trimaran Tutorial

138An example: Representing
traditional CFG

y = s+1
p = y == r
Branch if p

y = 2 * y y = 3 / y

z = y+1

Operation Graph with
control flow edgesRegion Structure

y = s + 1

y = 3 / yy = 2 * y

PU region

BB region

BB region

p = y == r

Branch if p

y = s + 1

BB region

BB region

Traditional CFG

Representation in Elcor IR

Trimaran Tutorial

139

Control Flow Viewer

Trimaran Tutorial

140

Control Flow Viewer

Trimaran Tutorial

141Uniform representation of
dependences

• Operation graph can represent both control flow
and data dependences

Operation graph with
control flow edges

Operation graph with control flow and
threaded flow dependence edges for y

y = s + 1

y = 3 / yy = 2 * y

p = y == r

Branch if p

y = s + 1

y = s + 1

y = 3 / yy = 2 * y

p = y == r

Branch if p

y = s + 1

Trimaran Tutorial

142

Data Dependency Viewer

Trimaran Tutorial

143

Operation graph elements

• Op(eration) class

• Operand class

• Edge class

Trimaran Tutorial

144

Op class

• Represents an operation
– Machine operation
– Compiler operations (e.g.,CONTROL_MERGE, PRED_CLEAR)

• Has source and destination operands including guarding
predicate (their number is determined by MDES)

dest1, ..., destm = opcode(src1, ..., srcn) if p

• May have implicit sources and destinations
– e.g., parameter passing registers for BRL

• Memory dependence "sources" and "destinations"
– Memory dependences are encoded as "def" and "use" of special

variables
<$a> r3 = load (r4)

store(r1, r2) <$a, $b, ...>

– Simplifies dependence graph construction

• Set of input edges and set of output edges
• Schedule time, latency queries for sources/destinations

Trimaran Tutorial

145

Operand Class

• Registers
– Unassigned or assigned
– Can be unbound or bound to static or rotating register files.

• Macro registers
– Registers reserved by compiler or runtime system. Parameter

passing registers, stack pointer, frame pointer, loop counter,
epilogue stage counter etc.

• Memory registers
– Used to encode memory dependence edges

• Register names
– Used as operands to REMAP operation for EVR’s

• Local branch targets
– Basic block ID’s that appear as branch targets

• Literals
– Integer, float, double, predicate, string, label

• Undefined

Trimaran Tutorial

146

Instruction Schedule Viewer

Trimaran Tutorial

147

EVR’s

• EVRs allow multiple values from a
sequence of assignments to be live
at the same time

• An EVR is a linearly ordered set of
VRs

– Elements are referenced using the
notation t[0], t[1], etc.

– A special remap operation to "shift"
reference coordinates

t = 0; // t means t[0]

remap(t); // Previous value
 // of t is now t[1]

t = 1;

remap (t);

t = t[1] + t[2] // t = 0 + 1

• EVRs allow

– Accurate representation of value flow
across zero or more iterations of a
loop

– Representation of results of analysis
and transformation without unrolling
or unnecessary copies

E.g., The use of the value loaded in
previous previous iteration as t[2]

– Representation in dynamic single
assignment form to eliminate inter-
iteration anti- and output
dependences

• Use of EVRs in IR doesn’t imply use
of rotating registers in hardware

– Code can be unrolled at a later stage
if rotating registers are not supported

Trimaran Tutorial

148

Mem_vrMem_vr

RegReg

VR_nameVR_name

Macro_regMacro_reg

Int_litInt_lit

Pred_litPred_lit

Float_litFloat_lit

Double_litDouble_lit

String_litString_lit

Label_litLabel_lit

Cb_operandCb_operand
UndefinedUndefined

Base_operandBase_operand

Operand

Operand Class Hierarchy

Operand class is a wrapper for all operand types.
– Provides Boolean methods for class type testing

– Provides access methods to class specific fields

– Provides comparison operators

– Manages symbol table

Trimaran Tutorial

149

Edge Class

• Edges Represents dependence constraints between
operations

• Edges do not represent value-flow like data flow graphs

• Edge types:
– Control (sequential control flow, control dependence)
– Flow, anti and output dependences on registers

– Flow, anti and output memory dependences classified as
"certain" or "maybe"

• An edge has pointers to source and destination ops

• An edge also contains more detailed reason for dependence

– Represented in terms of "Port" for source and destination
operands

– e.g., register flow edge from DEST1 of op1 to SRC2 of op2

• Latency setting and querying functions

Trimaran Tutorial

150

Edge

Reg_anti

Mem

Reg_outReg_flow

Control

Edge Class Hierarchy

• The hierarchy is based on how latency for an edge
is computed.

Trimaran Tutorial

151

Region Structure
• Region structure over a program is a tree structure

– Leaves of the tree are Operations

• A region is defined by
– Operations contained in the region

– Set of control flow edges that enter or exit the region

– Set of entry and exit operations (mostly redundant)

• All entry operations are CONTROL_MERGE
operation

• All exit operations are branch operations
– There is a DUMMY_BRANCH operation if region exit is

fallthrough

• Regions are used to set scope for analysis,
optimization, scheduling, register allocation etc.

Trimaran Tutorial

152

Region

BB HB LoopBody Procedure

OpCompound_region

Region Class Hierarchy

• Region class is an abstract base class.
• Compound regions can contain other regions in the

region tree.

Trimaran Tutorial

153

Region Representation

Procedure region

Compound region

BB region

y = s + 1

y = 2 * y

p = y == r

Branch if p

y = s + 1

y = 3 / y

E1 E2

E3

E4

E5

Op1

Op2

Op3

Op4

Op5

Op6

Entry edges: E1, E2, E4
Exit edges: E3,E5
Entry ops: Op1, Op3
Exit ops:Op2, Op4

Parent: R1
Subregions: List of all Ops in R2

R1

R2

R3

Other regions
in procedure

Trimaran Tutorial

154

Region Hierarchy Viewer

Trimaran Tutorial

155

Region Hierarchy Viewer

Trimaran Tutorial

156Control Flow Between
Compound Regions

• There is no explicit representation of control flow
between compound regions
– In a region hierarchy, successor or predecessor of a

compound region is not unique.

• If we consider a “cut” of region hierarchy tree, we
can construct a control flow graph of the regions in
the cut.

E.g., if in a region hierarchy every operation is subregion of
a basicblock, we can find a cut containing only basic
blocks therefore a basic block control flow graph can be
constructed.

Every exit edge of a basic block is an entry edge of some
basic block

Trimaran Tutorial

157

Practical Considerations

• Operation graph has CONTROL_MERGE and
DUMMY_BRANCH operations inserted in it to
construct a basic-block only covering of the
operation graph at all times

• Procedures don’t have entry/exit control flow edges.
• Some important region hierarchies are

– Single entry/multiple exit compound region with a tiling of
basic-blocks and hyperblocks (Region based analysis).

– Single entry/multiple exit compound region with a tiling of
basic-blocks (Control flow transformations).

– Hyperblock with only operations in it (Acyclic scheduling).

– LoopBody with only operations in it (Modulo scheduling)

Trimaran Tutorial

158

void check_region_hierarchy(Region* r)

{

// Iterator over subregions

 Region_subregions subreg_iter;

if (r->is_op()) return;

Compound_region* cr = (Compound_region*) r;

for(subreg_iter(cr) ; subreg_iter!=0 ; subreg_iter++) {

Region* current_subregion = (*subreg_iter);

assert(current_subregion->parent() == r);

check_region_hierarchy(current_subregion);

 }

}

Using the IR iterators

Current item, please

Move to next

Initialize iterator

We aren’t done, are we?

Elcor provides a collection of iterators to walk data structures

Trimaran Tutorial

159

 Attributes

• The intermediate representation allows annotations
on Regions and Edges
– Used for module specific purposes

– Used when the information is sparse

• There are two kinds of attributes
– Heavy weight

– Type safe
– Can be represented in ASCII form of IR (can be printed and

parsed in)
– If the object it is attached to is deleted the attributes are deleted

– Light weight
– Stored and retrieved using string keys
– Not type safe

Trimaran Tutorial

160

Rebel

• Rebel is the ASCII representation of the IR
• It is human-readable

– Can be parsed by a recursive descent parser

• It has the same structure and elements as the data
structures of IR
– region based

– sufficiently powerful to express program properties at
various stages of compilation

– before/after scheduling
– before/after register allocation

Trimaran Tutorial

161

The Rebel Reader/Writer

• For reading Rebel, an input procedure is provided for each
component type:
– Region *region(IR_instream&);
– Op *op(IR_instream&);

– BB*bb(IR_instream&)
– Edge *edge(IR_instream&);
– . . .

• These either return a pointer to the object, if it’s of the
appropriate type, or NULL.

• The main driver routine, which reads the first lexical token and
dispatches the appropriate reader procedure, is
– El_Input_Token ir_read(IR_instream& in)

• For printing out a top-level object (i.e. a procedure) along with
dictionaries of all edges and attributes, there is the top-level
procedure
– ir_write(IR_outstream& out, Region* r)

Trimaran Tutorial

162

(
)s_opcode(addw.0) attr(lc ^52) flags(sched)

Region
Type

Region
Number

Operation
Name Operation

Destinations

op 7 ADD_W [br<11:i gpr 11>][br<27:i gpr 14> i<1>] p<t> s_time(3)

Operation
Sources

Operation
Predicate

Operation
Scheduling

Time

Operation
Opcode (link
to HMDES)

Operation
Attributes Operation

Flags

Operation in Rebel

Here is how an operation region looks in Rebel

Trimaran Tutorial

163

• A register operand (in an Op region) looks like:

• The register status is r if it’s a virtual register or br
if it is an allocated register.

27 i :gpr 14 >

Register
Status

br <

Data
Type

Register
File

Physical
Register
Number

Virtual
Register

Index

Operands in Rebel

Trimaran Tutorial

164

bb 1 (
 weight(0)
 entry_ops(44) exit_ops(45)
 entry_edges() exit_edges(ctrl ^7)
 flags(prologue sched) attr(lc ^32)
 subregions(
 op 44 (C_MERGE [] [] s_time(0)
 s_opcode(control_merge)
 in_edges() flags(sched))
 .
 .
 op 45 (DUMMY_BR [] [] s_time(0)
 s_opcode(dummy_branch)
 out(op-46(0)) flags(sched))
)
)

Compound Region in Rebel

• Here is a Basic Block region.
– The other compound regions are similar.

Trimaran Tutorial

165

Summary

• Elcor Intermediate Representation is
– Graph based with explicit representation of dependence

and control flow

– Region based

• There are two forms of the intermediate
representation that a researcher can use.
– Internal representation

– C++ object based
– Used by all Elcor modules

– Textual representation (Rebel)
– Complete program representation
– Easily parsed, readable

