
195

Trimaran Tutorial

Case Study:
A Region-Based Register

Allocator



196

Trimaran Tutorial

Overview

• A region-based register allocator was implemented.
– Technical description to follow

• Register allocator is complete and will be part of the
initial release of the system.

– Design & implementation contributed by Kim, Gopinath, Kathail, Esfahany, and

Palem.



197

Trimaran Tutorial

Features of the Register Allocator

• Region Based

• Priority Based Coloring
– Chow & Hennessy’s approach

• Frequency based priority function

• Finer Grained Live Ranges

• Region Reconciliation

• Handles Predicated Instructions



198

Trimaran Tutorial

Register Allocator as a Case Study

• PlayDoh architectural features to be addressed
• Module Interface Issues

– Input, Output, Module Placement

• Implementation Issues
– Data structures, libraries, tools
– How the module was inserted in the compilation path

• Conclusions about the infrastructure



199

Trimaran Tutorial

PlayDoh-Specific Allocation Issues

• Predication must be handled correctly
– support provided by Elcor’s Predicate Query System

(PQS)

• No other aspects of PlayDoh influenced the
design or implementation of the register
allocator.
– VLIW instruction was considered as a sequence of

operations.



200

Trimaran Tutorial

Module Interface Issues

• Input/Output
– Like all Elcor modules, the register allocator is an IR-

to-IR transformer.
– The input is a program graph in the internal IR

• instructions have been scheduled

• register operands are virtual.

– Output is program graph in the internal IR
• register operands are physical registers

• spill operations have been added to the graph
– but not yet scheduled



201

Trimaran Tutorial

Module Interface (cont)

• Module Placement
– Register Allocator comes after modulo scheduling

and prepass acyclic scheduling and is followed by a
postpass acyclic scheduler.

– Adding a new phase of the compilation process is
very easy

• really just adding a procedure call in the main driver routine.

– Call is to the main routine of the new module

– Argument is generally the current procedure being
compiled.



202

Trimaran Tutorial

Main Elcor Driver Routine

Common_process_function(procedure *f)

{ . . . //preprocessing, initialization

. . . //classic optimizations
//(copy propagation, etc)

. . . //modulo scheduling

. . . //prepass acyclic scheduling

el_solve_reg_alloc(f) // register

//allocation

. . . //postpass scheduling

. . . //finalization

}
We just
added

this call



203

Trimaran Tutorial

Implementation Issues

• Data structures used
– Naturally, the region, operand, and edge classes of

the IR were used.
• In our case, only control edges

– no register or memory dependence

– Also a rich class library
• Hash maps, bit vectors, lists, doubly-linked lists, hash sets, sorted

lists, tuples

• Library Routines
– We used an existing procedure for computing

liveness.
– Also the PQS routines.



204

Trimaran Tutorial

Implementation Issues (cont)

• Debugging Support
– Simulator for functional debugging.

– It’s easy to examine the Rebel text before and after a
phase.

• Modify common_process_function

. . .

ir_write(out,f)

el_solve_reg_alloc(f) 

 ir_write(out,f) 

. . .

– Class Browser
• VCG tool for examining the Rebel IR in graphical form.



205

Trimaran Tutorial

Conclusions

• Development Time
– 2 person-months implementation time + 2 person-

month testing and debugging
• Once familiar with infrastructure (several more months)

• Very short development time for a real register allocator in a
serious compiler.



206

Trimaran Tutorial

Conclusions (cont)

• Value of Infrastructure
– Primary value lay in the framework

• IR, module interfaces, existing modules

– Tools were useful
• PQS

• Liveness Analysis

but would not have been hard to write from scratch.
• Easy for user community to enrich the existing infrastructure.


