
HPL-PD Architecture Specification: Version 1.1

Vinod Kathail, Michael S. Schlansker, B. Ramakrishna Rau

Compiler and Architecture Research

HPL-93-80 (R.1)

February, 2000 (Revised)

{kathail, schlansk, rau}@hpl.hp.com

instruction-level
parallelism, parametric
architecture, EPIC,
VLIW, superscalar,
speculative execution,
predicated execution,
programmatic cache
control, run-time
memory disambiguation,
branch architecture

HPL-PD is a parametric processor architecture conceived
for research in instruction-level parallelism (ILP). Its
main purpose is to serve as a vehicle to investigate
processor architectures having significant parallelism and
to investigate the compiler technology needed to
effectively exploit such architectures. The architecture is
parametric in that it admits machines of different
composition and scale, especially with respect to the
nature and amount of parallelism offered. The
architecture admits EPIC, VLIW and superscalar
implementations so as to provide a basis for
understanding the merits and demerits of these different
styles of implementation. This report describes those parts
of the architecture that are common to all machines in the
family. It introduces the basic concepts such as the
structure of an instruction, instruction execution
semantics, the types of register files, etc. and describes
the semantics of the operation repertoire.

This is a revised version of “HPL PlayDoh Architecture Specification: Version 1.0”, Technical
Report HPL-93-80, February, 1994.

© Copyright Hewlett-Packard Company 1994, 2000

1

1 Introduction

HPL-PD1 is a parametric processor architecture conceived for research in instruction-level
parallelism (ILP). HPL-PD defines a new philosophy of ILP computing, called Explicitly
Parallel Instruction Computing (EPIC) [2-4], which represents an evolution of the VLIW
architecture2. HPL-PD's main purpose is to serve as a vehicle to investigate processor
architectures having significant parallelism and to investigate the compiler technology needed to
effectively exploit such architectures.

When we released the first version of the architecture, we envisioned that a broad segment of the
ILP research community would start using the architecture in their research, thus providing a
single base to judge the merits of new architectural features and compiling technology. Since the
publication of the first version, HP Labs and our university partners have been using the HPL-PD
architecture for our own research. We, in conjunction with the University of Illinois' IMPACT
project and NYU's ReaCT-ILP project, developed a set of tools, e.g., a compiler and a simulator,
for the HPL-PD architecture. In 1998, this compiler and simulation infrastructure, christened
Trimaran3, was released to universities to encourage wide-spread research in EPIC architecture
and compiler technology.

HPL-PD is a parametric architecture in that it admits machines of different composition and
scale, especially with respect to the amount of parallelism offered. This is to enable experiments
that answer one of the important question in ILP research—how much parallelism is available in
programs and how best to exploit it. Although the architecture started out as a VLIW architecture
and evolved into the EPIC architecture because of our research interests, it takes no position as to
the style of implementation. It admits both EPIC (which includes VLIW as a subset4) and
superscalar implementations so as to provide a basis for understanding the merits and demerits of
the two styles of implementation. However, certain of HPL-PD's features are better motivated in
the EPIC context.

We emphasize that the main purpose of the HPL-PD architecture is to serve as a research
vehicle. Its current definition represents a collection of ideas whose merits we wish to explore
and should not be taken as frozen in concrete. We expect the architecture to evolve. Its evolution
will be engineered to support the investigation of important research questions in instruction-
level parallelism. New features will be added as and when required, and subsets of interest will
be defined for specific studies. We will ensure that the evolution takes place in a controlled
manner and that it is coordinated with our collaborators.

1 This document is a revision of an earlier technical report published in 1994 [1]. In the intervening period, the name
EPIC was coined to describe the style of processor architecture that was introduced in the earlier technical report.
This document acknowledges the new name. Also, several new operations have been added to the operation
repertoire.

2 The Intel IA-64 instruction-set architecture [5] represents the first commercial instance of the EPIC style of
architecture.

3 More information about Trimaran can be found at www.trimaran.org.

4 In the rest of this document, EPIC will be understood, implicitly, to include VLIW.

2

This report describes those parts of the architecture that are common to all machines in the
family. It introduces basic concepts such as the structure of an instruction, instruction execution
semantics, the types of register files, etc. and describes the semantics of the operation repertoire.
The report is organized as follows. The rest of this section highlights the changes from the earlier
version. Section 2 gives an overview of the architecture and discusses its parametric nature. It
also discusses the EPIC and superscalar scheduling models. Section 3 discusses the instruction
execution semantics including the semantics of multiple operations per instruction, speculative
execution and predicated execution. Section 4 describes the data types and the types of the
register files supported by the architecture. Section 5 introduces the format used for describing
operations. The remaining sections except the last describe the operation repertoire provided by
the architecture. Sections 6 and 7 describe integer and floating-point computation operations,
respectively. Section 8 describes operations for data type conversion and for moving data
between register files. Section 9 describes compare operations including compare-to-predicate
operations. Section 10 describes the memory system and the load/store operation repertoire.
Section 11 describes the branch architecture. The last section contains some concluding remarks.

1.1 Architectural enhancements / changes in Version 1.1

This sections highlights the new features as well the changes from the earlier version for readers
who are already familiar with the earlier version of the architecture. The most visible change, of
course, is the new name for the architecture. For various non-technical reasons, the architecture
is now called HPL-PD. In addition, Sections 2.2, 3.1 and 3.2 have been modified substantially.
We have also added a number of new references in order to bring them up-to-date.

Architectural enhancements in Version 1.1 are summarized below. These include several new
integer, data conversion and move operations to allow greater experimentation. In addition, the
architecture now provides a comprehensive set of load/store operations to save/restore and spill /
unspill registers, something that was missing from the first version. Please note that we have
added several new tables to accommodate the new operations, and thus, table numbers from the
earlier version are not a good guide to look up the description of various operations in this
version.

1. Integer operations: The architecture now includes five new integer operations -- ABS, MIN,
MINL, MAX and MAXL. See Table 2 for their detailed specifications.

2. Conversion operations: Version 1.0 didn't include conversion operations between unsigned
integers and floating point values. Thus, four new operations -- CONVLWS, CONVLWD,
CONVLSW and CONVLDW, have been added for this purpose. Table 4 contains more
details about these operations.

3. Move operations: The new version includes a number of new move operations. These
include the following:

MOVEGBP, MOVEB, MOVEGCM, which are described in Table 5;

separate single and double precision moves between floating point registers, called
MOVEFS and MOVEFD, which are described in Table 6;

 MOVEGBGT, MOVEGBFT, MOVEGBPT, MOVEGBBT, which are described in Table 6;
and

PRED_CLEAR_ALL, PRED_CLEAR_ALL_STATIC, PRED_CLEAR_ALL_ROTATING,
which are described in Table 7.

 Some of these operations are used in generating efficient code to spill or save/restore

3

predicate registers and speculative tag bits (see Section 10.7).

4. Load/store operations to spill and save/restore registers: Section 10.7 describes these
operations as well as their typical usage. The new operations are: SAVE, RESTORE,
FSAVE, FRESTORE, BSAVE and BRESTORE.

2 Overview of the architecture
The HPL-PD opcode repertoire, at its core, is similar to that of a RISC-like load/store
architecture, with standard integer, floating point (including fused multiply-add type of
operations) and memory operations. In addition, it provides a number of advanced features,
which we believe are important for enhancing and exploiting parallelism in programs.

The first generation of VLIW machines, such as the Cydra 5 [6] and the Multiflow TRACE [7],
proved themselves as very successful in exploiting the parallelism present in applications rich in
counted loops (DO-loops). The results on "scalar" code were somewhat mixed. Apart from the
use of speculative execution, there was very little ability to accelerate the execution of codes in
which the limiting factor was not a shortage of execution resources but, rather, the critical path
through the computation. There were few architectural features to assist in reducing the length of
this critical path and, in fact, the absence of data caches served to exaggerate it. The primary
objective with HPL-PD has been to provide architectural features that permit the relaxation of
ordering constraints between operations on the critical path, thereby shortening the critical path
and facilitating schedules that exhibit higher levels of ILP than are generally expected for such
applications.

Many of the architectural features in HPL-PD have their microarchitectural counterparts in
conventional or superscalar processors. In much the same way that the first generation of VLIW
machines made the execution resources and latencies architecturally visible, HPL-PD makes
these heretofore invisible capabilities visible to, and controllable by, the compiler. A case in
point is the cache memory hierarchy that has generally been controlled entirely by hardware and
transparent to the compiler. A consequence of this is that certain applications that have poor data
locality suffer massive performance degradation because the hardware continues to use the same
default cache management policy. Most high performance processors aimed at the scientific
processing community have, as a consequence, avoided the use of a data cache. Unfortunately,
sequential performance suffers in the absence of a data cache. HPL-PD addresses this dilemma
by providing a cache hierarchy whose default behavior is to function in the conventional manner,
but with the additional ability for the program to explicitly instruct the hardware on how to
manage data which behaves anomalously.

In the first part of this section, we preview some of the more advanced features of the
architecture. Then, we describe the parametric nature of the architecture.

2.1 Advanced features of the architecture

The advanced features of the architecture can be grouped into the following major areas. Many
of these features are well-known in the ILP research community. The Cydra 5 [6], the Multiflow
Trace [7] and the HP PA-RISC [8] architectures included several of these features. Some others
have been proposed in the literature (see, for example, [9-15]).

1. Speculative execution: Speculative execution is an important technique for enhancing
parallelism in a program. It is used to break certain types of dependences between

4

operations. Section 3.4 describes speculative execution in more detail and identifies two
forms of speculation: control speculation used to move operations above branches and data
speculation used in the run-time disambiguation mechanism discussed later.

The architecture supports speculative execution of most operations; exceptions are stores
and branches. To correctly handle exceptions generated by speculative operations, the
architecture provides speculative and non-speculative versions of operations and provides
speculative tag bits on registers (see Section 4).

2. Predicated execution: Predicated or guarded execution refers to the conditional execution
of operations based on a boolean-valued source operand, called a predicate. It is a way to
enforce the requirements of program control-flow, which is different from that provided
by branch operations. Predicated execution is often an efficient method to handle
conditional branches and provides much more freedom in code motion than possible
otherwise. Section 3.3 describes predicated execution in more detail.

To support predicated execution, the architecture provides 1-bit predicate register files and
a rich set of compare-to-predicate operations which set predicate registers. In addition,
most operations have a predicate input to conditionally nullify their execution (see Section
3.3 for exceptions).

3. Memory system and load/store operations: The architecture supports a hierarchical memory
system consisting of first-level cache(s), a data prefetch buffer, second-level cache(s) and
main memory. The main architectural features are:

• Compiler control of the memory hierarchy: The architecture provides latency and
cache-control modifiers with load/store operations, which permit a compiler to
explicitly control the placement of data in the memory hierarchy. The default, in the
absence of the use of these directives, is the conventional hardware management. The
architecture also supports prefetching of data to any level in the memory hierarchy.

• Run-time disambiguation mechanism: "Maybe" dependences between store and load
operations are a limiting factor in exploiting parallelism. The run-time disambiguation
mechanism is used to break these dependences. It permits a load and dependent
operations to be issued before potentially aliasing stores even in the absence of
conclusive compile-time aliasing information. The mechanism consists of three related
families of operations, called data speculative loads (LDS), data verify loads (LDV)
and data verify branches (BRDV).

In addition, the memory operations in an instruction are executed in left-to-right prioritized
order (see Section 3.2). This allows stores and dependent memory operations to be issued
in the same cycle. Also, the architecture provides post-increment load/store operations
similar to the ones in the HP PA-RISC architecture. For hardware efficiency, the
architecture doesn't provide pre-increment load/store operations. Section 10 describes
memory operations in more detail.

4. Branch architecture: The branch mechanism described in this report is a preliminary
attempt to address the efficient implementation of branches in ILP machines. It permits
different pieces of the information related to a branch to be specified as soon as they
become available in the hope that the information can be used to reduce the adverse effect
of the branch, e.g., by prefetching instructions from the potential branch target.

Prepare-to-branch operations are used to specify the target address and the static prediction
for a branch ahead of the branch point, typically initiating instruction prefetch. The
architecture provides a separate type of register file, called a branch target register file, to

5

store information about branches that have been prepared. Compare-to-predicate
operations are used to compute branch conditions, which are stored in predicate registers.
Branch operations test predicates and perform the actual transfer of control. The operation
repertoire includes special branch operations to support software pipelining of loops.
Section 11 describes branch architecture in more detail.

5. Unusual semantics for simultaneous writes to registers: The architecture permits multiple
operations to write into a register simultaneously provided they all write the same value. In
this case, the result stored in the register is simply the value being written. In the case of
predicate registers, this atypical semantics is useful for efficient evaluation of boolean
reductions (see below). In the case of other types of registers, the utility of this semantics is
a research topic. See Section 3.2.

6. Support for efficient boolean reduction: We are interested in a class of parallelization
techniques, which we generically call height-reduction of control dependences. In many
cases, application of these techniques require a fast way to compute AND or OR of several
boolean values to derive either a branch condition or a predicate to guard the execution of
operations. The architecture provides a set of compare-to-predicate operations (OR and
AND classes in Section 9.3) for efficient evaluation of boolean reductions.

7. Register files: The architecture supports rotating registers in integer, floating-point and
predicate register files in order to generate "tight" code for software-pipelined loops. See
Section 4.

2.2 Parametric nature of the HPL-PD meta-architecture

The EPIC philosophy is that it is the compiler, not the hardware, that is responsible for
orchestrating the ILP of an executing program [4, 3]. The code for an EPIC processor reflects an
explicit plan for how the program will be executed. This plan is created statically, i.e., at
compile-time. It specifies when each operation will be executed, using which functional units,
and with which registers as its operands. The EPIC compiler designs this plan, with full
knowledge of the processor. The plan is communicated, via an instruction set architecture that
can represent parallelism explicitly, to hardware which then executes the specified plan. The
existence in the code of this explicit plan permits the EPIC processor to have relatively simple
hardware despite high levels of ILP.

Static scheduling is necessary for superscalar processors as well, if the best performance is to be
achieved at run-time. The definition of a good compile-time scheduling philosophy for
superscalar processors is still an open problem. One strategy is to use the EPIC scheduling
philosophy, an approach that has been adopted by the IMPACT project. After scheduling and
register allocation, each parallel instruction is emitted as a series of sequential instructions. The
superscalar hardware is expected to rediscover the parallelism at run-time and perform dynamic
scheduling to achieve the intended ILP.

An EPIC code generator (the scheduler and register allocator) is responsible not just for the
performance of the code, but for its correctness as well. Accordingly, it requires the following
detailed information about the target EPIC processor [16]:

1. The register file structure. This includes the number of register files and, for each one, the
number of registers in it and their bit width.

2. The operation repertoire. An operation consists of an opcode and a register tuple—one
register each per operand. We treat any addressing modes supported by the target machine

6

as part of the opcode rather than as part of an operand. An operand is either a literal or a
register in the target machine. For uniformity, we model a literal as the contents of a read-
only “literal register”. Multiple instances of an operation correspond to the presence in the
machine of multiple functional units that can perform that operation. The operation
repertoire specifies the opcode repertoire and, for each opcode, the sets of register files that
it can access. Implicitly, and in a manner that is more directly useful to a compiler, this
specifies the connectivity between the functional units and the register files.

3. Explicitly scheduled resources. This is the set of resources (functional units, buses,
instruction fields, etc.) that the compiler must manage to ensure that two operations do not
attempt to use the same resource at the same time.

4. The resource usage behavior of each operation. The compiler must use this information to
ensure that the issue times of any two operations that use the same resource is such,
relative to each other, that they will not end up using that resource simultaneously. This
also determines which sets of operations can be issued simultaneously on this processor.

5. Latency descriptors. Every operation has a latency descriptor that specifies when, relative
to the time that the operation is issued, each source operand is read and each destination
operand is written.

HPL-PD is a meta-architecture, i.e., a parametric processor architecture that encompasses a space
of machines each of which has a different amount of ILP and a different instruction set
architecture (ISA)5. Consequently, HPL-PD cannot be specific regarding all five types of
information listed above. It only describes the first two, and in a manner that supersets the
corresponding information for any specific ISA. In other words, HPL-PD (i.e., this document)
only describes the types of register files and the operation repertoire supported by the meta-
architecture. Furthermore, the types of register files and the operation repertoire of any
particular processor will be a subset, perhaps a proper subset, of what is defined in this
document. Section 4 describes the types of register files supported by the architecture. Sections
6 through 11 describe HPL-PD's operation repertoire.

Architectures within the HPL-PD space consist of a set of register files, a set of functional units
connected to register files, and a hierarchical memory system. A specific machine can have one
or more of each type of register file except for the control register file6; there is exactly one
control register file in each machine. Likewise, a specific machine can have one or more
instances of each operation in HPL-PD's operation repertoire. Multiple instances of an operation
means that multiple instances of that operation can be issued in parallel, i.e., there are multiple
functional units in the machine that can perform this operation.

All five types of information listed above, regarding the specific target processor, must be
supplied to the compiler. A machine-description database (mdes) specifies this information to
the compiler. The register file and operation repertoire information supplied in an mdes must be
consistent with what is specified in this document. In collaboration with the University of

5 Although HPL-PD is, strictly speaking, a meta-architecture, for convenience we shall refer to it as an architecture.

6 We call a machine with one register file of each type a single-cluster machine, and a machine with more than one
register file of at least one type a multi-cluster machine. Our focus has been on single-cluster machines; thus, it is
possible that certain issues about multiple-cluster machines have not been properly addressed in this report.

7

Illinois' IMPACT project, we have developed an approach to describe an EPIC machine to a
compiler [17, 18]. It was designed with the EPIC scheduling philosophy in mind and is based on
the approach used by Cydrome in its compiler. The approach is supported by the following
facilities:

1. A high-level machine description language: This is a human-readable version of the five
types of information listed above.

2. A low-level machine description language: It specifies the same information as the high
level machine description language but in a form that is suitable as an input to a compiler.

3. A macro processor and translator from the high-level machine description to the low-level
machine description.

4. The mdes Query System (mQS): This consists of the internal mdes data structures that hold
the above information, and an associated query interface. The query interface is a
collection of interface functions that a compiler can call to get the requisite information
about the target machine and to manage a resource-usage map during scheduling.

A more detailed discussion of these topics is beyond the scope of this report. Interested readers
should refer to the detailed description of the structure of the machine description database and
the underlying theory presented in [16]. This paper describes an incremental model of code
generation for EPIC processors that provides an efficient way to generate high quality code. The
paper also relates this process to the structure of the machine description database that is queried
by the code generator for the information that it needs about the target processor. A companion
document [18] discusses an implementation of these ideas and techniques in Elcor, which is our
compiler research infrastructure.

Elcor is a part of the Trimaran infrastructure. Trimaran, too, is designed such that it is parametric
in nature. It reads the architectural parameters for a machine from its mdes. Thus, the various
components of Trimaran will work either with all machines in the HPL-PD space or with a well-
defined subclass, e.g., EPIC machines.

The information discussed above is adequate for experiments that concern themselves with
scheduling, register allocation and performance as a function of the parallelism and cost of the
processor's datapath. For such purposes, the details of the instruction format are unimportant.
However, if the issues under investigation are code size, scheduling that is sensitive to code size,
instruction cache performance or instruction unit complexity and cost, then detailed knowledge
of the instruction format is essential.

The components of the compiler infrastructure that depend upon this information are the
assembler, the disassembler and the debugger. In keeping with the spirit of the rest of the
infrastructure, it is desirable that they, too, be parametric and machine description driven. The
nature of the description of the instruction format depends on the nature of the instruction format,
for which there are many alternatives [5, 4]. The class of instruction formats that we have
selected for our EPIC research is the class of what we term multi-template instruction formats
[19]. We have also defined a strategy for dealing with instruction formats in a parametric fashion
[20]. It consists of the following components:

1. A meta-grammar and meta-syntax for the class of multi-template instruction formats. The
syntax of the instructions (i.e., the instruction format) for any given processor is a sentence
of this meta-grammar.

2. An internal data structure, the Instruction Format Tree (IF-tree), for representing the
description of an instruction format within the mdes.

8

3. A set of mQS interface functions that are needed during assembly and disassembly.

Our implementation of this strategy in Elcor is partially complete. When finished, it will be
similar to the one described above, that is, there will be a high-level language for describing a
multi-template instruction format, a low-level machine-readable counterpart, a translator from
the high-level to the low-level description, and extensions to the internal mdes data structures
and the query interface.

Even for experiments that do not require knowledge of the detailed instruction format, the
compiler must still be able to specify branch addresses for the simulator's benefit. In such cases,
one can assume an abstract machine whose program counter counts in units of an operation, i.e.,
an operation's address is the number of operations preceding it in the program text, as laid out in
memory. A point to note is that branch addresses must point to instruction boundaries; it is
illegal to branch into the middle of an instruction.

3 Execution semantics
This section describes the basics of instruction execution. Sections 3.1 and 3.2 describe the
logical structure of an instruction and the execution semantics of an instruction, respectively.
Section 3.3 describes predicated execution, and Section 3.4 covers speculative execution. The
last section contains brief comments about exceptions and exception handling in the case of
normal execution of operations.

3.1 Logical instruction structure

In this section, we describe those aspects of the instruction structure that are necessary to
understand HPL-PD. Since our discussion of HPL-PD is not, and cannot be, tied to any specific
instruction format, we shall operate at what might, conceptually, be viewed as the assembly
language level. Accordingly, we define a simple assembly language to facilitate our description
of HPL-PD. This, or some equivalent syntax, would also be suitable as input to a simulator.

An instruction consists of a sequence of operations, each of which is terminated by a delimiter
(a semi-colon). Each instruction is terminated by an end-of-instruction marker (the new line).
The end-of-instruction marker can be viewed as a pseudo-operation, which performs actions
typically associated with the end of an instruction, e.g., advancing the program counter and
advancing virtual time. For the convenience of a simulator, branch operations appear as the last
operations within an instruction. There is no explicit NOP instruction in our assembly language.
An empty instruction, i.e., an instruction with no operations, serves the same purpose as a NOP.

In the superscalar version of the architecture, an instruction has zero operations (i.e., a NOP) or
one operation. In the EPIC version, the maximum number of operations in an instruction, the
maximum number of operations of a specific type (e.g., integer operations or memory
operations), and the legal combinations in which they may appear are all specified by the mdes.

An operation corresponds to an elementary operation performed by a functional unit, e.g., an add
or a load. An operation specification consists of the following:

1. An opcode: Related opcodes are grouped into a family. Each family of opcodes has a major
opcode and a set of modifiers. An opcode consists of a major opcode and a specific value
for each of the modifiers associated with the family.

2. A list of sources: A source is either a register specifier or a literal. Conceptually, each
register file in a machine has an unique name, and a register specifier consists of the name

9

of a register file and a register number within the register file. Literals are discussed below.

3. A list of destination register specifiers. Note that there are no destinations in the case of
store operations and some of the branch operations.

The architecture permits integer literals in an operation. An operation that expects an integer
value as an operand can specify either an integer register or an integer literal. Note that a
machine can currently have literals of only one width: 32 bits7. Note, also, that there is no
support for floating-point literals.

In this report, we use the following notations. An opcode is of the form a.b.c.d where a is the
major opcode and b, c, d are modifiers. Modifiers are written in the same order in which they
appear (top to bottom) in tables. In addition, the speculative version of an opcode is denoted by
the modifier "E", which always appears at the end. The notation for writing register specifiers is
as follows. Consider a register file named "R" containing ns static registers and nr rotating
registers (see Section 4). Then, we specify a static register within the file as Ri where i is in the
range 0 ≤ i ≤ ns - 1, and specify a rotating register as R[j] where j is in the range 0 ≤ i ≤ nr - 1. In
some cases, we use a, b, c, etc., for register specifiers; their meaning will be clear from the
context. The following example illustrates the notation used in writing assembly code.

Cycle Instruction

1

2

3

GPR1 = ADD.W(GPR2,GPR3); GPR4 = SUB.W(GPR2,GPR3) if PR2;

− − − −
FPR2 = FADD.S(FPR1,FPR3); BRU(BTR2);

In this example, there are three instructions, each of which is on a separate line. The first
instruction contains two operations; the second instruction is an empty instruction, which is
denoted by ----; and the third instruction again contains two operations, one of which is an
unconditional branch (BRU). The number in the cycle column indicates the cycle number in the
program's virtual time when the corresponding instruction is issued. For example, the third
instruction is issued at the third cycle in the program's virtual time. In some cases, when cycle
numbers are not shown explicitly, they are assumed to be sequentially numbered.

To understand the notation used for writing operations, consider the first operation in the first
instruction. ADD.W is its opcode, general-purpose registers GPR2 and GPR3 are its sources, and
the general-purpose register GPR1 is its destination. If necessary, the guarding predicate for an
operation is specified after the keyword "if"; for example, see the second operation in the first
instruction. Each operation is terminated by a ";" delimiter.

3.2 Instruction execution

As mentioned in the introduction, we deliberately do not take a position about the style of
implementation and admit both EPIC and superscalar implementations of HPL-PD. Broadly
speaking, the characteristics of these two models of execution semantics are as follows.

7 We recognize this as a major shortcoming of HPL-PD. It will be rectified in the next revision of this document,
which will articulate a flexible way to define literals of various widths via the mdes.

10

The EPIC model [4, 3] is characterized by the following: MultiOp instructions and
architecturally visible, non-unit assumed latencies (NUAL) for operations. EPIC code cannot be
interpreted correctly without an understanding of these two features. The term MultiOp means
that an instruction may explicitly indicate that multiple operations are to be issued in parallel.
Within the EPIC model, we can identify two types of machines: "equals" (EQ) machines and
"less-than-or-equals" (LEQ) machines. In an EQ machine, the latency(s) associated with an
operation defines the exact time when the operation produces its output(s). In a LEQ machine,
the latency(s) associated with an operation defines only the latest time by which the operation
produces its output(s); the operation may produce its output(s) earlier than that. HPL-PD permits
both types of machines. A detailed discussion of the merits of each type is beyond the scope of
this report.

The superscalar model is characterized by the following. Instructions are UniOp, i.e., they have
exactly one operation (which could be a NOP operation), operations have unit assumed latency
(UAL), and dynamic scheduling is used to issue operations in parallel. That is not to say that
static scheduling is not useful or that operations actually have unit latency. For performance
reasons, compilers for superscalar machines, too, will schedule operations with full knowledge
of the amount of parallelism in the machine and the actual latencies of operations. However, this
knowledge is not necessary to correctly interpret code generated for a superscalar processor.

The number of instructions issued in a single cycle depends upon the implementation. In the
typical EPIC version of the architecture, a single instruction is issued in each cycle. However, the
architecture permits dynamically scheduled EPIC machines in which more than one instruction
can be issued in a single cycle [21]. In the superscalar version, the number depends upon the
capabilities of the dynamic scheduling hardware in a machine.

The execution semantics of a Multiop instruction is as follows. All operations in an instruction
can be issued in parallel. Consequently, there can be no flow (i.e., read-after-write) dependences
between operations in a HPL-PD instruction with one notable exception. The architecture
permits flow dependences between memory operations as long as they go from left-to-right in an
instruction by ensuring that the following holds:

• The memory operations within an instruction are executed in an order that is consistent with
their sequential left-to-right order of execution. This permits compilers to reduce the length
of critical paths involving memory operations. For example, two store operations, one of
which potentially depends upon the other, can be issued in the same instruction. Similarly, a
store and a flow-dependent load can also be issued in the same instruction.

The semantics described above for a Multiop instruction permit two variations [4]. The first
variation, called Multiop-P semantics requires that the correct execution is guaranteed only if all
the operations in the instruction are issued simultaneously. The compiler can schedule code with
the assurance that all operations in one instruction will be issued simultaneously. For instance, it
can even schedule two mutually anti-dependent copy operations, which together implement an
exchange copy, in the same instruction. Without this assurance, the exchange copy would have
had to be implemented as three copy operations that require two cycles. Thus, the Multiop-P
semantics permits admissible dependences between operations (i.e., anti and output
dependences) to be bi-directional across the instruction.

However, MultiOp-P semantics pose a problem with respect to the compatibility across a family
of machines with differing amount of functional units. When code that was generated for a
machine with a certain width (i.e., number of functional units) has to be executed by a narrower
machine, the narrow processor must necessarily issue the MultiOp instruction semi-sequentially,

11

one portion at a time. Unless care is taken, this will violate MultiOp-P semantics and lead to
incorrect results. For instance, if the aforementioned copy operations are issued at different
times, the intended exchange copy is not performed.

The other variation, called MultiOp-S semantics, simplify sequential execution by excluding bi-
directional dependences across a MultiOp instruction. MultiOp-S instructions can still be issued
in parallel, but they can also be issued sequentially from left to right. This permits the code
compiled for a wide machine to be correctly executed on a narrow machine. On the other hand,
the Multiop-S semantics excludes some of the benefits of the Multiop-P semantics. For example,
an exchange-copy cannot be implemented as two copy operations in the same instruction. The
compiler must ensure that admissible dependences between operations in a MultiOp instruction
are only from left to right.

MultiOp-P and MultiOp-S bear similarities to EQ and LEQ, respectively. Both MultiOp-P and
EQ guarantee that operations will not complete early in virtual time, whereas MultiOp-S and
LEQ permit it. Although it need not necessary be the case, one would tend to use MultiOp-P in
conjunction with EQ semantics, and to pair MultiOp-S with LEQ.

At present, the Elcor compiler in Trimaran supports only the Multiop-S semantics. It provides
several versions of Multiop-S, which differ in the set of operations that are allowed to have
intra-instruction dependences. For example, one version doesn’t permit any intra-instruction
dependences; another allows intra-instruction dependences only among memory operations.

The execution of an operation involves reading its inputs, computing the specified function and
writing the results into the specified destination registers. The detailed timing constraints
concerning the execution of an operation, e.g., the latency of the operation, the times when inputs
are sampled, the times when outputs are produced, are architectural parameters specified
separately for each machine in its mdes.

The architecture provides unusual semantics for simultaneous writes to registers. Multiple
operations may write into a register in a cycle provided they all write the same value. In this
case, the result stored in the register is simply the value being written. On the other hand, if
multiple operations attempt to write different values into a register simultaneously, then the
result stored in the register is undefined. In the case of predicate registers, this atypical semantics
is useful for efficient evaluation of boolean reductions; see the description of compare-to-
predicate operations in Section 9.3. The utility of this semantics in the case of other types of
registers such as general-purpose and floating-point registers is not well-understood. The full
generality is provided to facilitate research in this area.

The architecture permits multiple branch operations in an instruction. Moreover, the latency of a
branch operation is an architectural parameter that is specified for each machine in its mdes. A
significant point to note is that a branch takes effect after exactly n cycles where n is the latency
of the branch. That is, branch operations always have the "equals" semantics, even in "less-than-
or-equals" machines.

Like integer or floating point operations, branch operations are executed in a parallel pipelined
manner with the following implications. First, consider the execution of an instruction containing
multiple branch operations. In this case, the result is well-defined only when at most one
operation takes the corresponding branch. If more than one branch operations specify that the
corresponding branches be taken, then the result of the execution is undefined. In other words,
simultaneous multiple writes to the program counter (PC) are not permitted. It is the compiler's
responsibility to ensure that, in an instruction, at most one branch takes. Second, branch

12

operations in the delay slots of a branch are executed in a pipelined fashion, which may give rise
to "visits" (see Section 11).

3.3 Predicated execution

Predicated or guarded execution is a way to enforce the semantics of program control-flow,
which is different from the one provided by branch operations. It refers to the conditional
execution of operations based on a boolean-valued source operand, called a predicate. Predicated
execution is frequently an efficient method to handle conditional branches and provides much
more freedom in code motion than possible otherwise. For example, a compiler can use
predicated execution to eliminate many of the conditional branches present in a program, a
technique commonly referred to as if-conversion. If-conversion not only reduces the impact of
branch latencies but has the benefit that operations can be moved freely across branch
boundaries. If-conversion is used in software-pipelining of loops with conditionals [22] and in
hyperblock scheduling [23]. Predicates may also be used to fill branch delay slots more
effectively than possible otherwise. Note, however, that predicated execution is no substitute for
branching. Its benefits are obtained at a price--operations that are nullified still consume machine
resources in the EPIC model of execution. The Cydra 5 architecture [6] included a general form
of predicated execution. Other architectures with some form of conditional execution include HP
PA-RISC and DEC Alpha.

The model of predicated execution in the HPL-PD architecture is an enhanced version of the one
provided by the Cydra 5 architecture. The architectural features relevant to predicated execution
are as follows:

1. There are 1-bit predicate register files, which are partitioned into static and rotating portions
(see Section 4).

2. The main operations on predicate registers are a set of compare-to-predicate operations,
each of which can set up to 2 predicate registers. There are also operations to move data
between predicate registers and integer registers and operations to clear predicate registers
en masse. In addition, all of the integer computation operations and standard load/store
operations can be used to operate on 32 predicates at a time by using control register
aliases (see Section 4).

3. A class of compare-to-predicate operations and the unusual semantics of simultaneous
writes to registers described in Section 3.2 provide an efficient method to evaluate boolean
reductions. This provides an effective method for control-height reduction.

4. Most operations have a predicate input that guards their execution. We call such operations
predicated operations. When the predicate has value 1 (true), the operation executes
normally. When the predicate has value 0 (false), the execution of the operation is nullified
i.e., no change in the machine state takes place. The exact mechanism by which the
execution of an operation is nullified depends upon the implementation. Predicated
operations can be executed unconditionally by specifying the static predicate register PR1,
which is permanently 1 when used as an input (see also Section 4.5).

There are a few operations whose execution cannot be nullified. These operations also
have one or more predicate inputs, but they use these inputs like data inputs. Branch
operations related to software-pipelining of loops fall in this category. Compare-to-
predicate operations are also an exceptional case for which it is hard to classify whether
they are predicated or not (see Section 9.3 for more details).

13

3.4 Speculative execution

The architecture supports speculative execution of most operations; the exceptions are stores to
memory and branch operations. Some of the architectural support for speculative execution is
similar to the one described in [14]; see also[11, 15].

In this report, we use the term speculative execution in a broader sense than it is used in the
literature. The notion of speculative execution includes two distinct forms of speculation.

1. Control speculation: This refers to the execution of operations before it has been
determined that they would be executed in the normal control-flow of execution.
Traditionally, speculative execution has been identified with control speculation.

2. Data speculation: This refers to the execution of operations with potentially incorrect
operand values. An example of the data speculation is the execution of both a load and an
operation that uses the loaded value before potentially aliasing stores that originally
preceded them. The operation that uses the loaded value may execute with incorrect data.
In the case of data speculation, the compiler must ensure program correctness by creating a
code sequence, which is invoked to re-issue the operations that were executed with
incorrect data. The run-time disambiguation mechanism described in Section 10.6 provides
a form of data speculation.

The main issue in both forms of speculation is the correct handling of architecturally visible
exceptions. If a speculatively executed operation generates such an exception, then the exception
should be deferred and reported only after it has been determined that the exception would also
occur in the normal program execution.

To support exception handling, the architecture provides speculative tag bits on registers and
provides speculative and non-speculative versions for most operations except for store and
branch operations, which don't have speculative versions. We use the modifier "E" (for eager) to
denote the speculative version of an operation; that is, the name for the speculative version is
obtained by appending E to the name of the non-speculative counterpart. A couple of additional
points to note are as follows. First, we assume that both speculative and non-speculative version
of an operation behave identically with respect to the types of exceptions generated and the
conditions under which they are generated. Second, we defer all issues related to the processing
of exceptions for non-speculative operations to a later version of the architecture.

In order to clearly explain speculative execution, we introduce terms for generating and signaling
an exception. Generation is the detection and logging of an exception condition resulting from
the execution of an operation. A generated exception causes an exception signal when it is
known that the operation would have executed in the original non-speculative code sequence.
Exception signaling causes the CPU to treat an exception condition by invoking exception
processing, which may result in abnormal program termination, invoking an exception handler,
or other special actions.

Prior to any speculative code motion, exception generation and signaling are simultaneous.
Speculative code motion may separate the exception generation and signaling times using the
speculative tag bit to propagate the exception condition from an operation which generates the
exception to an operation which signals the exception. This allows an operation to execute
speculatively and generate but not signal an exception. The exception is signaled only if it is
determined later that the operation would have also executed in the original program. The means
by which this is accomplished is described below.

14

Execution of a speculative operation: If the speculative tag of every source register is not set,
then the execution proceeds normally when the operation doesn't generate an exception. When
the operation does generate an exception, the speculative tag of the destination register(s) is set.
If the speculative tags of one or more source register are set, then an exception propagation
occurs. The operation simply sets the speculative tag bit of its destination register.

To report an exception, the value of PC and any other required state information at the time of
the exception must be recorded and propagated. This report doesn't describe the mechanism for
doing this; that is left for a later version of the report. (We will probably use an extension of the
mechanism described in [14]. The main complication is that predicates are 1-bit registers.)

Execution of a non-speculative operation: If the speculative tag of every source registers is not
set, then the execution proceeds normally, and any exception generated by the operation is
immediately signaled. If the speculative tags of one or more source registers are set, then it
indicates that an exception was generated by a speculative operation. The exception is, therefore,
signaled using the recorded state information. If multiple source registers have their speculative
tag bit set, the exception corresponding to the first operand is reported.

Table 1 summarizes the handling of exceptions; a --- indicates that the corresponding value is
undefined. (For instance, the IEEE floating-point standard requires that the destination of an
excepting instruction be left unchanged.)

 Table 1: Semantics of speculative operations

Operation type Tag bits of
source registers

Operation
generates an
exception

Destina-
tion's tag
bit

Other actions Signal
exception if
enabled

Speculative 0 for all
sources

No 0 Update destination register with
the result

No

Yes 1 Record PC and other state
information for exception
reporting

No

1 for one or
more sources

Don't care
condition

1 Record that an exception was
propagated

No

Non-
speculative

0 for all
sources

No 0 Update destination register with
the result

No

Yes 0 --- Yes
1 for one or
more sources

Don't care
condition

0 --- Yes

3.5 Exceptions and exception handling for non-speculative operations

A detailed description of all issues related to exceptions and exception handling for non-
speculative operations are left to a later version of the architecture. These issues include the types
of exceptions generated by an operation, conditions under which they are generated, masking of
exceptions, and the exception handling mechanism. The only point we would like to emphasize
is the one related to speculative execution. That is, a non-speculative operation also signals an
exception when the speculative tag of any of its source registers is set.

15

4 Register files
This section describes the data types and the types of register files supported by the architecture.
Section 4.1 describes the data types; Section 4.2 comments on static and rotating registers; the
remaining sections describe the various types of register files.

A machine in the HPL-PD family can have one or more register files of each type except for the
control register file; each machine contains exactly one control register file. The number of
register files of each type and the number of registers in each file are architectural parameters,
which are specified separately for each machine. We assume that each register file in a machine
has a unique name and that a register specifier consists of a register file name and a register
number within the file.

4.1 Data types

The data types supported by the architecture are byte, integer, floating-point number and
predicate. The first three data types and their formats are the same as in HP PA-RISC.

• Byte: Bytes are signed or unsigned 8-bit quantities and are packed four to a word. They may
be used to represent signed values in the range -128 through 127, unsigned values in the
range 0 through 255, an arbitrary collection of 8 bits, or an ASCII character.

• Integer: There are signed and unsigned integers in two lengths: half-word (16 bits) and word
(32 bits). 64-bit integers will be included in a later version. Half-word integers must be
aligned at two-byte boundaries, i.e., they must be stored in memory at addresses evenly
divisible by two. Word integers must be aligned at four-byte boundaries. Note that unsigned
integers can also be used to represent an arbitrary collection of 16 or 32 bits.

• Floating point: There are IEEE compliant 32-bit single precision and 64-bit double precision
formats for floating point numbers. Single precision numbers must be aligned at four-byte
boundaries, and double precision numbers at eight-byte boundaries.

• Predicate: 1-bit boolean values

4.2 Static & Rotating Registers

The architecture supports both static and rotating registers. Most register files (see the following
sections) are partitioned into static and rotating portions with differing numbers of registers. The
static registers are conventional registers; the rotating registers logically shift in register address
space every time the rotating register base (RRB) is decremented by certain loop-closing
branches; see Section 11.2.5.

Rotating registers have the special property that the register state prior to rotation is closely
related to the register state after rotation. Consider a register file R with nr number of rotating
registers; that is, the file contains registers R[0] ... R[nr - 1]. Assume that x is the value contained
in some register R[j] prior to a "rotate" operation where j is in the range 0 ≤ j ≤ (nr - 2). Then
after a rotate operation R[j +1] has value x. Thus, for example, if R[0] has value x prior to
rotation then R[1] has value x after a single rotation. Note that the value of R[0] after rotation is
unspecified. We call this an open loop model of rotation, i.e., there is a contiguous window of
size nr into a circular register file of unspecified size. This simplifies the definition of
architectural families of processor with varying numbers of rotating registers in a file and
provides better code compatibility across the family.

16

Typically, rotating registers are implemented in terms of a rotating register base (RRB), which is
used to map register offsets to physical registers. A register access involves the modulo sum of
the register offset to RRB in order to select a physical register. That is,

register address = (register offset + RRB) mod np

where np is the number of physical registers and np ≥ nr. Rotation is accomplished by simply
decrementing the RRB. In such an implementation, precisely in the case where the number of
physically addressed rotating registers is equal to nr, we have a closed loop model. That is, if
R[nr - 1] has value x prior to rotation, then R[0] has value x after rotation. We constrain code
generation schemes to make no use of this fact and thus allow the number of physical registers,
in general, to differ from nr. In the rest of this report, we will assume the above implementation
of rotation.

4.3 General purpose register file (GPR):

It is used to store signed or unsigned integers and has the following properties:

• Width = 32 bits + 1 bit for speculative tag.

• Partitioned into static and rotating portions.

By convention, static GPR0 is used as a bit-bucket.

4.4 Floating-point register file (FPR):

It is used to store single or double precision floating-point values, and its characteristics are as
follows:

• Width = 64 bits + 1 bit for speculative tag

• Partitioned into static and rotating portions.

• Static FPR0 = 0.0, static FPR1 = 1.0.

• Writes to static FPR0 and FPR1 are ignored.

4.5 Predicate register file (PR):

It is used to store predicates and has the following properties:

• Size = 1 bit + 1 bit for speculative tag.

• Partitioned into static and rotating portions.

• Static PR0 = 0 (i.e., false), static PR1 = 1 (i.e., true).

• Writes to static PR0 and PR1 are ignored.

4.6 Branch-target register file (BTR):

This register file is used to store information about branches that have been prepared. The
information for each prepared branch includes the branch target address and its static prediction.

17

• Size = 64 bits.

• 32 bit branch address + 1 bit for static prediction + 1 bit for speculative tag

4.7 Control register file (CR):

A machine in the HPL-PD family has exactly one register file of this type. Control registers
provide a uniform scheme to access internal state within the processor. All integer operations can
operate with control registers either as sources or as destinations. However, some of the
operations may not make any sense on some of the control registers. We describe the registers in
the control register file using mnemonics such as PC. The mapping of these mnemonics to actual
register number in the control register file is part of a machine's description.

• Size = 32 bits.

• Control registers supported by the architecture are listed below.

• PC: Instruction Counter

• PSW: Processor status word

• RRB: Register Relocate Base for rotating registers

• LC: Loop counter

• ESC: Epilog stage counter

• PV(i, j): Aliases used to refer to 32 predicate registers at a time in a predicate register
file. The first index identifies a register file, and the second index identifies a group of
32 registers in the file. For example, PV(1, 0) refers to the first 32 predicate registers in
the predicate register file with name 1, PV(1, 1) to the second 32 registers in the same
file, etc.

• IT(i, j), FT(i, j), PT(i, j): Aliases used to refer to 32 speculative tag bits at a time in a
general-purpose register file, a floating-point register file and a predicate register file,
respectively. The first index identifies a register file, and the second index identifies a
group of 32 tag bits in the file.

• BTRL(i, j), BTRH(i, j): Aliases used to refer to low order 32-bits and high order 32 bits
of a branch target register. The first index identifies a branch target register file and the
second index identifies a register in that file.

5 Format of operation description
In the tables given in the subsequent sections, each row describes a single operation or a set of
related operations. The description in each row consists of the following:

• Opcode: This specifies opcodes for the set of operations. It consists of a major opcode and a
set of modifiers. The major opcode and each of the modifier sets are on separate lines. Each
modifier consists of a set of mutually exclusive alternatives, separated by |. For example,
the opcode for floating-point add operation is of the form:

FADD
S | D

18

This means that there are two floating-point add operations, one for single-precision
(specified by S) and one for double-precision(specified by D). In some cases, there is only
one alternative for a modifier, and the modifier may seem unnecessary. The reason for
including such a modifier is to provide an easy way to add more alternatives in the future.

Section 3.1 describes the notation we use in this report for writing operation names. Note
that the opcodes given in this column are for non-speculative versions. As described in
Section 3.1, the opcode for the speculative version of an operation is derived by appending
the modifier "E" to the corresponding non-speculative opcode. The Sp field described later
indicates whether the architecture provides speculative versions for these operations or not.

• Operation description: This is a short description of the functionality provided by the major
opcode and modifiers.

• I/O description: This is used to describe the following aspects of operations in the family.
First, it provides a stylized description of the information about the register files from which
the operation reads its explicitly specified operands and to which it writes its explicitly
specified results. Second, it establishes an ordering on the sources and destinations, which is
used in describing the semantics. Third, it is used to specify whether operations in the
family are predicated or not.

The format of the I/O description is as follows:

• <predicated> <source>, ... , <source> : <destination>, ..., <destination>

The first term <predicated> is either P? or empty with the following interpretation:

• P?: This denotes that operations in the family are predicated. That is, they take a
predicate register (static or rotating) as an input which is used to conditionally nullify
the operation.

• An empty field (i.e., no P?) denotes that operations are not predicated, that is, they
don't have a predicate input that is used to guard their execution.

<source> or <destination> is a sequence consisting of one or more of the following:

• I: General purpose register (static or rotating)

• F: Floating point register (static or rotating)

• P: Predicate register (static or rotating). The corresponding predicate input/output is
treated like a data input/output.

• B: Branch target register

• L: Integer literal. This cannot be part of a <destination> sequence.

• C: Control register

Thus, for example, ICL as a <source> specifies that the operand can be an integer register,
a control register or an integer literal.

• Sp: Y(es) in this field indicates that these operations have both speculative and non-
speculative versions. N(o) in this field indicates that there are no speculative versions of
these operations.

• Opcode semantics: This describes the action performed by operations in the family using a
C like syntax. In some cases, this field simply refers to the text. For predicated operations,
the action specified in this field corresponds to the case when the predicate input is 1 (true).

19

It is implicit in the specification that when the predicate input is 0, then the execution of
operation is nullified.

In the semantic description of operations, we use the following notation. Src<n>, for
<n> ≥ 1, denotes the nth source operand excluding the guarding predicate (if there is one).
Similarly, dest<n>, for <n> ≥ 1, denotes the nth destination. For predicated operations, the
guarding predicate is denoted by src0. For operation that are not predicated, src0 has no
meaning.

In describing operations, we don't enumerate cases under which an operation generates
exceptions. As mentioned in Section 3.4, all issues related to exceptions are left for a later
version of the architecture.

6 Integer computation operations
The operation repertoire includes a relatively standard set of arithmetic and logical operations on
integers; see Table 2 on the next page. All these operations operate on 32-bit words; there are no
byte and half-word operations. Arithmetic operations come in two forms: signed and unsigned.
In this report, unsigned operations are distinguished by the word "logical" in their descriptions.

All integer operations can be issued speculatively and have a predicate input to guard their
execution. Each operation includes the length (or format) specifier, which seems unnecessary
given that there is only one option, i.e., W. It is included so that the operation repertoire can be
easily extended to support both 32-bit and 64-bit integers in the future.

The repertoire includes opcodes for complex operations like multiply, divide, remainder, min
and max. They may be provided in hardware or emulated in software. Shift and add logical
operations are useful in address computation, which typically involves multiplying by a small
constant.

Table 2: Integer computation operations

Opcode Operation description I/O description Sp Opcode semantics

ABS
W

Absolute value
word

P? ICL : IC Y dest1 = abs(src1)

ADD
W

Add
word

P? ICL, ICL : IC Y dest1 = src1 + src2

ADDL
W

Add logical
word

P? ICL, ICL : IC Y dest1 = src1 + src2

AND
W

AND
word

P? ICL, ICL : IC Y dest1 = src1 & src2

ANDCM
W

AND complement
word

P? ICL, ICL : IC Y dest1 = src1 & (! src2)

DIV
W

Divide
word

P? ICL, ICL : IC Y dest1 = src1 / src2

DIVL
W

Divide logical
word

P? ICL, ICL : IC Y dest1 = src1 / src2

20

Table 2 (cont.): Integer computation operations

Opcode Operation description I/O description Sp Opcode semantics

MAX
W

Maximum value
word

P? ICL, ICL : IC Y dest1 = max(src1, src2)

MAXL
W

Maximum value logical
word

P? ICL, ICL : IC Y dest1 = max(src1, src2)

MIN
W

Minimum value
word

P? ICL, ICL : IC Y dest1 = min(src1, src2)

MINL
W

Minimum value logical
word

P? ICL, ICL : IC Y dest1 = min(src1, src2)

MPY
W

 Multiply
word

P? ICL, ICL : IC Y dest1 = src1 * src2

MPYL
W

Multiply logical
word

P? ICL, ICL : IC Y dest1 = src1 * src2

NAND
W

Nand
word

P? ICL, ICL : IC Y dest1 = !(src1 & src2)

NOR
W

Nor
word

P? ICL, ICL : IC Y dest1 = !(src1 | src2)

OR
W

Or
word

P? ICL, ICL : IC Y dest1 = src1 | src2

ORCM
W

Or complement
word

P? ICL, ICL : IC Y dest1 = src1 | (! src2)

REM
W

Remainder
word

P? ICL, ICL : IC Y dest1 = src1 % src2

REML
W

Remainder logical
word

P? ICL, ICL : IC Y dest1 = src1 % src2

SH1ADDL
W

Shift 1 and add logical
word

P? ICL, ICL : IC Y dest1 = (src1 << 1) + src2

SH2ADDL
W

Shift 2 and add logical
word

P? ICL, ICL : IC Y dest1 = (src1 << 2) + src2

SH3ADDL
W

Shift 3 and add logical
word

P? ICL, ICL : IC Y dest1 = (src1 << 3) + src2

SHL
W

Shift left
word

P? ICL, ICL : IC Y dest1 = src1 << src2

SHR
W

Shift right
word

P? ICL, ICL : IC Y dest1 = src1 >> src2

SHLA
W

Shift left arithmetic
word

P? ICL, ICL : IC Y dest1 = shla(src1, src2)

SHRA
W

Shift right arithmetic
word

P? ICL, ICL : IC Y dest1 = shra(src1, src2)

SUB
W

Subtract
word

P? ICL, ICL : IC Y dest1 = src1 - src2

SUBL
W

Subtract logical
word

P? ICL, ICL : IC Y dest1 = src1 - src2

XOR
W

Exclusive OR
word

P? ICL, ICL : IC Y dest1 = src1 ⊕ src2

XORCM
W

Exclusive OR complement
word

P? ICL, ICL : IC Y dest1 = src1 ⊕ (! src2)

21

7 Floating point computation operations
The operation repertoire provides standard arithmetic operations like add, multiply as well as
combined multiply-add style of operations for both single and double precision floating point
numbers. The repertoire includes opcodes for complex operations like divide, square root and
reciprocal. They may be provided in hardware or emulated in software.

Table 3 lists the floating-point computation operations. All these operations can be issued
speculatively and have a predicate input that guards their execution.

Table 3: Floating-point computation operations

Opcode Operation description I/O description Sp Opcode semantics

FADD
S | D

Add
single or double precision

P? F, F : F Y dest1 = src1 + src2

FABS
S | D

Absolute value
single or double precision

P? F : F Y dest1 = abs(src1)

FDIV
S | D

Divide
single or double precision

P? F, F : F Y dest1 = src1 / src2

FMAX
S | D

Maximum value
single or double precision

P? F, F : F Y dest1 = max(src1, src2)

FMIN
S | D

Minimum value
single or double precision

P? F, F : F Y dest1 = min(src1, src2)

FMPY
S | D

Multiply
single or double precision

P? F, F : F Y dest1 = src1 * src2

FMPYADD
S | D

Multiply and add
single or double precision

P? F, F, F : F Y dest1 = src1 * src2 + src3

FMPYADDN
S | D

Multiply, add and negate
single or double precision

P? F, F, F : F Y dest1 = - (src1 * src2 + src3)

FMPYRSUB
S | D

Multiply and reverse subtract
single or double precision

P? F, F, F : F Y dest1 = src3 - src1 * src2

FMPYSUB
S | D

Multiply and subtract
single or double precision

P? F, F, F : F Y dest1 = src1 * src2 - src3

FRCP
S | D

Reciprocal
single or double precision

P? F : F Y dest1 = 1.0 / src1

FSQRT
S | D

Square root
single or double precision

P? F : F Y dest1 = sqrt(src1)

FSUB
S | D

Subtract
single or double precision

P? F, F : F Y dest1 = src1 - src2

8 Conversion and move operations
This section describes operations for converting data types and for moving data from one register
file to another. The architecture provides the following types of conversion operations; see Table
4.

1. Integer to floating-point: These operations convert signed or unsigned (logical) integer
values to single or double precision floating-point values. They take their arguments from
general purpose registers and leave their results in floating-point registers. That is, a move
from general-purpose registers to floating-point registers is implicit in these operations.

22

2. Floating-point to integer: These operations convert single or double precision floating point
values to signed or unsigned (logical) integer values. They take their arguments from
floating-point registers and leave their results in general purpose registers. Again, a move
is implicit in these operations.

3. Floating-point to floating point: These operations are used for conversion between single
and double precision values.

4. Sign extension: These operations convert byte or half-word quantities into sign-extended
32-bit format. Note that byte and half-word load operations are unsigned loads in the sense
that they zero-extend (not sign-extend) the loaded values to convert them into 32-bit
format (see Section 10). Thus, to load a byte or a half-word and operate on it as a signed
quantity, it is necessary to explicitly sign-extend the loaded value.

All these operations can be issued speculatively and have a predicate input that guards their
execution.

Table 4: Conversion operations

Opcode Operation description I/O description Sp Opcode semantics

CONVWS Convert an integer to single precision
floating point

P? I : F Y dest1 = (float) src1

CONVWD Convert an integer to a double
precision floating point

P? I : F Y dest1 = (double) src1

CONVLWS Convert an unsigned integer (logical)
to single precision floating point

P? I : F Y dest1 = (float) src1

CONVLWD Convert an unsigned integer (logical)
to a double precision floating point

P? I : F Y dest1 = (double) src1

CONVSW Convert a single precision floating
point to an integer

P? F : I Y dest1 = (int) src1

CONVDW Convert a double precision floating
point to an integer

P? F : I Y dest1 = (int) src1

CONVLSW Convert a single precision floating
point to an unsigned integer (logical)

P? F : I Y dest1 = (unsigned int) src1

CONVLDW Convert a double precision floating
point to an unsigned integer (logical)

P? F : I Y dest1 = (unsigned int) src1

CONVSD Convert a single precision to a double
precision floating point

P? F : F Y dest1 = (double) src1

CONVDS Convert a double precision to a single
precision floating point

P? F : F Y dest1 = (float) src1

EXTS
B | H

 Extend sign
 byte or half-word

P? I : I Y See the description

Table 5 lists operations used to transfer data between various register files. All these operations
can be issued speculatively and have a predicate input to guard their execution.

Operations that move data between a GPR file and a FPR file put no interpretation on the value
being transferred. For example, MOVEGF.L and MOVEGF.U simply take 32 bits in a GPR and
store it into the lower or upper half of a FPR, respectively. Similar comments apply to
MOVEFG.L and MOVEFG.U.

This version of HPL-PD provides separate moves for single-precision and double-precision

23

floating point values in order to be consistent with other floating point operations. Both these
operations may be implemented as a simple 64-bit move between FPRs.

Table 5: Move operations

Opcode Operation description I/O description Sp Opcode semantics

MOVE Move a literal, GPR or CR to a GPR
or CR

P? ICL : IC Y dest1 = src1

MOVEGF
L | U

Move a GPR to
lower or upper half of a FPR

P? I : F Y dest1. (lower or upper half)
 = src1

MOVEF
S | D

Move a FPR to a FPR
single or double precision

P? F : F Y dest1 = src1

MOVEFG
L | U

Move to a GPR
lower half or upper half of a FPR

P? F : I Y dest1 = src1.(lower or upper
 half)

MOVEPG Move a predicate register to a GPR
and clear higher order bits

P? P : I Y dest1.lsb = src1
dest1.(other bits) = 0

MOVEGBP Move a GPR bit to a predicate
register

P? I, IL : P Y dest1 = src1[src2],
 i.e., src2th bit of src1

MOVEB Move a BTR to another BTR P? B : B Y dest1 = src1
MOVEGCM Move a GPR to a CR using a mask P? IL, IL, C : C Y dest1 = (src1 & src2) |

 (src3 & ~src2)

MOVEGBP moves a specified bit from a GPR to a predicate register; one of its uses is in loading
a predicate register from the main memory, for example, to unspill the register (see Section
10.7). MOVEGCM initializes a subset of bits in a control register and leave the other bits
unchanged. Please note that MOVEGCM replaces the LDCM operation in the earlier version. Its
main use is in writing to a group of predicate registers or a group of speculative tag bits in order
to restore or unspill them from the main memory. The second source is the mask that specifies
the indices of predicate registers or tag bits to restore.

Note that there is no operation to move data between predicate registers, since these moves can
be performed using the appropriate type of compare-to-predicate operations (see Section 9.4.3).
For convenience, one can define an operation (say MOVEPP) to move data between predicate
registers for the internal use of a compiler; the operation is then translated to an appropriate type
of compare-to-predicate operation during the code emission phase.

Table 6 lists operations that transfer a specified bit from a GPR to the speculative tag associated
with a register. All these operations can be issued speculatively and have a predicate input to
guard their execution. These operations are used to write to speculative tag bits while restoring or
unspilling registers from the main memory (see Section 10.7).

Table 6: Operations to move a GPR bit to a speculative tag bit

Opcode Operation description I/O description Sp Opcode semantics

MOVEGBGT Move a GPR bit to GPR speculative
tag

P? I, IL : I Y dest1 = src1[src2],
i.e., src2th bit of src1

MOVEGBFT Move a GPR bit to FPR speculative
tag

P? I, IL : F Y dest1 = src1[src2],
i.e., src2th bit of src1

MOVEGBPT Move a GPR bit to PR speculative
tag

P? I, IL : P Y dest1 = src1[src2],
i.e., src2th bit of src1

MOVEGBBT Move a GPR bit to BTR speculative
tag

P? I, IL : B Y dest1 = src1[src2],
i.e., src2th bit of src1

24

Table 7 lists operations that clear predicate registers en masse. These operations clear ALL
predicate registers or a subset, namely, static or rotating. They are used to clear predicate
registers before entering a software pipelined loop. HPL-PD provides control register aliases to
predicate registers so that we can operate on 32 predicate registers at a time. We can achieve the
effect of these operations by clearing 32 registers at a time. But, simulating any one of them
requires multiple operations. Since en masse clear is not that difficult to implement in hardware,
we included these operations rather than simulating them.

Table 7: Operations to clear the predicate registers en masse

Opcode Operation description I/O description Sp Opcode semantics

PRED_CLEAR_ALL Clear all predicate registers, static
and rotating

P? : Y P0, ..., Pn = 0
 P[0], ..., P[m] = 0

PRED_CLEAR_ALL_
STATIC

Clear all static predicate registers P? : Y P0, ..., Pn = 0

PRED_CLEAR_ALL_
ROTATING

Clear all rotating predicate
registers

P? : Y P[0], ..., P[m] = 0

9 Compare operations
These operations are used to determine a relation such as =, < etc. between two integers or
floating-point values. The result of the operation is a boolean value. The architecture provides
two different types of compare operations. The first type of operations, called compare-to-
register, write the result into general purpose registers. The second type of compare operations,
called compare-to-predicate, write the result into predicate registers. Section 9.1 describes the
compare conditions that can be specified with these operations. Sections 9.2 and 9.3 describe
compare-to-register and compare-to-predicate operations, respectively. Section 9.4 contains
some comments about the usage of these operations.

9.1 Compare conditions

Table 8 lists the compare conditions that can be specified with integer compare operations. These
conditions, including their mnemonics, are identical to the compare/subtract conditions in the HP
PA-RISC architecture.

Table 8: Compare conditions for integer compare operations

Condition
name

Description Result of
comparison

Condition
name

Description Result of
comparison

Always false 0 (false) TR Always true 1 (true)
= Equal opd1 = opd2 <> Not equal opd1 != opd2
< Signed less than opd1 < opd2 << Logical less than opd1 < opd2
<= Signed less than or

equal to
opd1 <= opd2 <<= Logical less than or

equal to
opd1 <= opd2

> Signed greater than opd1 > opd2 >> Logical greater than opd1 > opd2
>= Signed greater than or

equal to
opd1 >= opd2 >>= Logical greater than or

equal to
opd1 >= opd2

SV Opd1 minus opd2
overflows

Overflow
 (opd1 - opd2)

NSV Opd1 minus opd2
doesn't overflow

! Overflow
 (opd1 - opd2)

OD Opd1 minus opd2 is
odd

Odd
 (opd1 - opd2)

EV Opd1 minus opd2 is
even

Even
 (opd1 - opd2)

25

In cases where signed and unsigned (called logical) comparisons have different semantics, both
forms are provided. In the description of compare operations (see Tables 10 and 11), we will use
<I-cond> as an abbreviation for one of the integer compare conditions.

Table 9 lists the floating-point compare conditions. They are a subset of the ones provided in the
PA-RISC architecture, and their mnemonics are taken directly from the PA-RISC manual. Note
that the floating-point compare conditions in PA-RISC conform to the IEEE standard. Floating-
point comparisons are exact and neither overflow or underflow. Between any two operands, one
of four mutually exclusive relations is possible: greater than (>), less than (<), equal (=) and
unordered. The last case arises when at least one operand is a NaN. Every NaN compares
unordered with every operand, including another NaN. Also, comparisons ignore the sign of
zero, so +0 is equal to -0. The table specifies the result for each combination of the compare
condition and the relation that holds between the operands; T means the result is 1, F means the
result is 0. Consider, for example, the ?= compare condition. If the operands are either equal or
unordered, then the result is 1; otherwise the result is 0. In the description of compare operations,
we will use <F-cond> as an abbreviation for one of the floating-point compare conditions.

Table 9: Compare conditions for floating-point compare operations

Condition
name

Relation between the operands Condition
name

Relation between the operands

> < = unordered > < = unordered

false? F F F F !?<= T F F F
? F F F T ?> T F F T
= F F T F !?< T F T F
?= F F T T ?>= T F T T
!?>= F T F F !?= T T F F
?< F T F T != T T F T
!?> F T T F !? T T T F
?<= F T T T true? T T T T

PA-RISC also includes a set of floating-point compare conditions, which are similar to the ones
described above except that they cause an invalid operation exception if their operands are
unordered. We may incorporate these compare conditions in a later version of the architecture.

9.2 Compare-to-register operations

Table 10 lists the compare-to-register operations. As mentioned earlier, these operations write
their results into general-purpose registers. Integer compare operations operate on word (32-bit)
quantities; there are no operations that explicitly operate on byte and half-word data types. On
the other hand, floating point operations provide both single and double precision forms. Note
that all these operations can be issued speculatively, and they have a predicate input that guards
their execution.

Table 10: Integer and floating-point compare-to-register operations
Opcode Operation description I/O description Sp Opcode semantics

CMPR
W
<I-cond>

Compare to register
 word
compare condition

P? IL, IL : I Y dest1 = src1 <I-cond> src2

FCMPR
S | D
<F-cond>

Compare to register
single or double precision
compare condition

P? F, F : I Y dest1 = src1 <F-cond> src2

26

9.3 Compare-to-predicate operations

Compare-to-predicate operations are the primary operations that write into predicate registers,
and the architecture provides a rich set of these operations. This section describes the semantics
of these operations; the next section contains comments about their utility and usage.

Table 11 describes the various forms of compare-to-predicate operations provided by the
architecture. Each operation has three sources; the first is a predicate register and the other two
specify the values to be compared. Unlike most other operations, a compare-to-predicate
operation specifies two destinations, both of which are predicate registers. In addition to the
compare condition, each operation also specifies the type of action that is performed on each of
the two destinations. These action specifiers are called <D-action> in the table and are discussed
later in this section. See Section 9.4.3 for examples of fully expanded compare-to-predicate
opcodes.

Table 11: Integer and floating-point compare-to-predicate operations

Opcode Operation description I/O description Sp Opcode semantics

CMPP
W
<I-cond>
<D-action>
<D-action>

Compare to predicate
word
compare condition
action to take for the first destination
action to take for the second destination

P, IL, IL : P, P Y r = src2 <I-cond> src3
dest1 = See text and Table 12
dest2 = See text and Table 12

FCMPP
S | D
<F-cond>
<D-action>
<D-action>

Conditional compare to predicates
single or double precision
compare condition
action to take for the first destination
action to take for the second destination

P, F, F : P, P Y r = src2 <F-cond> src3
dest1 = See text and Table 12
dest2 = See text and Table 12

The semantics of one of these operations is as follows. The input values are compared according
to the condition specified in the operation. The result of the comparison along with the predicate
input and the <D-action> specifier for a destination determine the action performed on the
corresponding destination.

To understand the action specifiers, consider one of the destination. For each combination of the
predicate value and the result of the comparison, there are three possible choices as to what can
be done with the destinations. The choices are as follows:

1. Write 0 into the destination register.

2. Write 1 into the destination register.

3. Leave the destination unchanged.

That is, there are three possible actions for each of the four combinations of the predicate input
and compare result. Thus, there are a total of 34 = 81 possible actions that can be performed on a
destination. Out of these, the architecture supports the ones described in Table 12. That is,

<D-action> = UN | CN | ON | AN | UC | CC | OC | AC.

We believe that these are the ones that are important and that they are sufficient to cover most of
the requirements imposed by the various uses of predicates.

27

Table 12: Destination action specifiers for compare-to-predicate operations and their semantics. An entry
with -- means leave the target unchanged.

Predicate Result of On result On the complement of result
input comparison UN CN ON AN UC CC OC AC

0 0 0 -- -- -- 0 -- -- --
0 1 0 -- -- -- 0 -- -- --
1 0 0 0 -- 0 1 1 1 --
1 1 1 1 1 -- 0 0 -- 0

A bit of terminology that we use internally and is reflected in the names of these modifiers as
well as in this report. Unconditional class refers to operations with UN and UC modifiers, and
conditional class refers to the ones with CN and CC modifiers. OR class refers to operations with
ON and OC modifiers as they are used in OR reductions, and AND class refers to the ones with
AN and AC modifiers as they are useful in AND reductions (see the next section). N in the name
stands for "normal result" and C stands for "complement of result".

First, we discuss the four actions grouped under the heading "on result". Unconditional
operations (UN) always write into the destination register. If the predicate input is false, they
clear the destination register; otherwise, they copy the result of the comparison into the
destination register. In other words, these operation effectively compute the boolean conjunction
of the input predicate and the result of the comparison. Conditional operations (CN) behave like
predicated compares. That is, if the predicate input is false, they leave the destination unchanged;
otherwise they copy the result of the comparison into the destination. Note that both conditional
and unconditional operations display identical functionality if the predicate input is true and
differ only in the case when the predicate input is false. The other two classes (OR and AND) are
useful in efficient evaluation of boolean reductions (see the next section). Operations in the OR
class (ON) write a 1 into the destination register only if both the predicate input and the result of
the comparison are true. Otherwise, they leave the destination unchanged. Operations in the
AND class (AN) write a 0 into the destination register when the predicate input is true and the
result of the comparison is false. Otherwise, they leave the destination unchanged.

The other four actions are similar to the ones described above except that they implicitly
complement the result of the comparison. For example, consider UN and UC modifiers.
Operations with UN modifier write the result of the comparison into the destination register if
the predicate is true, whereas operations with UC modifier write the complement of the result.

A point to note is that the semantics of compare-to-predicate operations is somewhat unique with
respect to the conditions under which the writes to the destination register are nullified. As
discussed in Section 3.3, a predicated operation doesn't write into its destinations if the predicate
input is false. Conditional compares are the only ones that follow this semantics. Unconditional
compare operations always write into their destinations and use the predicate input like a regular
data input. Operations in the OR class and the AND class use not only the predicate input but
also the result of the comparison to decide whether to modify their destinations.

9.4 Usage and compiling issues

This section contains a brief discussion about the usage of compare operations. A detailed
discussion is beyond the scope of this report.

28

9.4.1 Compare-to-register vs. compare-to-predicate operations

Since the architecture provides two different types of compare operations, a compiler must
decide when to generate compare-to-register operations and when to generate compare-to-
predicate operations. A simple view is as follows. Predicates are used mainly to model the
control-flow of a program, either using branches or using predicated execution of operations.
Thus, if the result of a comparison is used to model the control-flow, then the compiler uses a
compare-to-predicate operation. On the other hand, if the result is used for other purposes, e.g.,
as a boolean datum in an expression or as a value to be stored in the memory, then the compiler
uses a compare-to-register operation. Efficient use of the two types of compare operations,
however, may require more sophisticated compiler-heuristic than the one outlined above for the
following reasons. First, there are cases where the result is used in both ways. These cases can be
handled either by moving the result from one register file to another or by computing the result
twice. Second, the architecture doesn't support a full suite of boolean operations on predicate
registers. Thus, sometimes it is more efficient to compute a predicate by using compare-to-
register operations and then moving the result to a predicate register.

9.4.2 OR and AND classes of operations (ON, OC, AN and AC modifiers)

These operations require some explanation because of their somewhat unusual semantics and
because their effective usage relies upon the cooperation of several operations. To simplify the
exposition, we phrase the discussion in terms of operations with only one destination.

These operations are used in the efficient evaluation of boolean reductions. Using these
operations, any OR or AND reduction can be evaluated effectively in a time equal to the latency
of a single compare operation provided there is enough parallelism in the machine. As an
example, we illustrate the evaluation of the following OR-reduction. In the expression, p is a
predicate register and a, b, c, d are general purpose registers.

p = a < b() ∨ ¬ c > d() ∨ a < c() ∨ b > d()
The code for evaluating the reduction is given below. The first statement in the code is a way to
set the register p to 0. In the statement, 0 refers to the integer literal 0. Note that the negation in
the second term can be computed either by complementing the compare condition or by using
the OC modifier. The code uses the first approach.

Code for evaluating the reduction
/ * The code assumes single destination compares * /

p = CMPP.W. .UN 0,0(); / * Set p to 0 * /

 / * Compare condition is "always false" * /

p = CMPP.W.<.ON a,b();
p = CMPP.W.<=.ON c,d();
p = CMPP.W.<.ON a,c();
p = CMPP.W.>.ON b,d();

The code works as follows. The predicate register p is initialized to 0. Each compare operation,
then, overwrites the register by 1 if the result of the comparison is true, and leaves the register

29

unchanged if the result is false. In other words, if one or more comparisons evaluates to true, the
predicate register is set to 1; otherwise it contains the initial value 0. This correctly evaluates the
reduction.

The most important point to note is that there are no restrictions in scheduling the compare
operations other than those imposed by the amount of parallelism in a machine. They can be
scheduled in any order including in the same instruction. Putting it another way, there are no
output dependences to honor even though they all write to the same register. As an example, the
code can be scheduled as shown below on a machine with at least four units.

Schedule for the code
Cycle Instruction
1 p = CMPP.W. .UN 0,0();
 l + 1 p = CMPP.W.<.ON a,b(); p = CMPP.W.<=.ON c,d();

p = CMPP.W.<.ON a,c(); p = CMPP.W.>.ON b,d();
 2l + 1 Value in the register p available for use

Thus, the evaluation of the reduction takes 2l cycles where l is the latency of an operation.
Typically, the initialization of p can be overlapped with other code in the program. Thus, the
evaluation effectively takes only l cycles.

Two features of the architecture cooperate to make the above possible. First is the semantics of
simultaneous write to a register. As mentioned in Section 3.2, the architecture permits multiple
operations to simultaneously write a value into a register provided all such operations write the
same value. In this case, the result stored in the register is well-defined and is the value being
written into the register. Second is the semantics of the OR class. Consider the four compare
operations issued simultaneously in the schedule given above. Within these operations, the ones
that write into p write the value 1; it is never the case that one operation attempts to write 1 and
another 0. Thus, the value stored into p is well-defined even though multiple operations write
into p.

As the name implies, operations in the AND class are used for boolean AND reduction. To
evaluate such a reduction, the result predicate is initialized to 1. Then, each of the compare
operation participating in the reduction over-writes the register by 0 if the result of the
comparison is false.

Note that compare-to-predicate operations also have a predicate input, and each operation
effectively computes the boolean AND of the predicate input and the result of the compare. In
other words, OR and AND classes of operations can be used to efficiently evaluate reductions in
which each term is the boolean AND of the result of a compare and the value stored in a
predicate register.

9.4.3 Use of compare-to-predicate operations

Compare-to-predicate operations were designed primarily to address the compiler requirements
in three important areas (see below), all of which are related to the broad issue of how to
efficiently model the control-flow of a program. To simplify the exposition, we phrase the early
part of the discussion in terms of operations with only one destination. Thus, we only consider
operations with the following modifiers: UN, CN, ON and AN. Note that the others, i.e., the ones
with C as the second letter, can be simulated by simply complementing the compare condition.

30

1. Predicated execution: In this area, there are two techniques of interest: if-conversion (see
[24, 23, 22]) and predicated code motion. If-conversion uses compare operations in UN,
CN, and ON classes. Operations in the UN class are suitable only for the if-conversion of
"structured" code. They are actually the best choice in that case, since they don't require
extra operations to initialize predicates. ON and CN classes can handle "unstructured"
code. The use of CN class requires fewer operations to initialize predicates than the use of
ON class. However, the use of ON class gives much more freedom in scheduling; there are
no output dependences to honor even if operations target the same register (see the last
section). Table 13 summarizes the above discussion. The compiler requirements for
predicated code motion are similar to those for if-conversion.

Table 13: Pros and cons of using UN, CN and ON classes in if-conversion

Operation class Handles "Unstructured"
code

Number of clears Unnecessary output
dependences

UN No None No
CN Yes Less Yes
ON Yes More No

2. Height reduction of control-dependences: Techniques in this area typically require efficient
computation of boolean AND of several branch conditions, and the AN class provides the
needed functionality.

3. Efficient computation of complex branch conditions: Many cases of complex branch
conditions can be computed efficiently by reducing them to a combination of boolean OR
and AND reductions. ON and AN class of operations provide a means for fast evaluation
of these reductions.

Compare-to-predicate operations with two destinations provide a means to optimize certain
common uses of these operations. Compilation technique that make use of predicated execution
(e.g., if-conversion) typically associate two predicates with each branch, one for the then clause
and one for the else clause. In these cases, the use of dual-destination operations reduces the
number of predicate-setting operations by half. For operations with two destinations, it becomes
important to provide complementary actions (e.g., UN and UC) so that the action on one
destination can be controlled by the result of the comparison and the action on the other by the
complement of the result. For example, the UN-UC combination is very useful in the if-
conversion of structured code.

There are 64 (8 × 8) distinct types of two-destination operations. We have decided to include all
64 types in the architecture to support the collection of data on the usefulness of various classes
of operations in compiling real programs.

Compare-to-predicate operations can also used to move a bit from a GPR to a predicate register.
As an example, the following operation moves the LSB of the general-purpose register GPR2 to
the predicate register PR2. The operation uses the compare condition OD to detect if LSB is 1 or
not. Note that the second output of the operation is ignored, since PR0 is a bit-bucket.

PR2, PR0 = CMPP.W.OD.UN.UN(GPR2,0);

As mentioned in Section 8, compare-to-predicate operations are also used to move datum from a
predicate register to another predicate register. As an example, the following code sets PR3 to
the same value as PR2.

31

PR3, PR0 = CMPP.W.=.UN.UN(0,0) if PR2;

Since the result of the comparison is always true (i.e., 1), the semantics of unconditional compare
operations ensures that PR3 is set to the same value as PR2.

10 Memory system and load/store operations

10.1 Memory system

The memory hierarchy in the HPL-PD architecture consists of the following:

1. main memory,

2. second-level cache,

3. conventional first-level cache, and

4. a data prefetch or streaming cache at the first level.

The exact structure of each of the three caches depends upon the implementation and is not
architecturally visible. The first-level and second-level caches may be structured either as a
combined instruction and data cache or as separate instruction and data caches.

The data prefetch cache is used to prefetch large amounts of data having little or no temporal
locality without disturbing the conventional first level data cache. In other words, the emphasis
in the case of data prefetch cache is more on masking load latencies than on reuse. Accesses to
the data prefetch cache don't touch the first-level cache. Many applications, e.g., scientific
computation, iterate over some or all elements of a large arrays. Furthermore, the computation
has little or no reuse of accessed elements. In such cases, bringing the data through first-level
cache may lead to thrashing. The accessed elements may replace other data that is reused often
such as scalar variables in a loop, in which case these other data items will be loaded again and
again. The data prefetch buffer is used to avoid such cache thrashing. Array elements are
prefetched to data prefetch cache and then loaded from this cache, and these elements don't
pollute the first-level cache. Typically, the data prefetch cache will be a fully associative cache
much smaller in size than the first-level cache. Its size is determined by the total number of loads
that can be in flight at the same time.

10.2 Latency specification and cache control directives

The architecture provides explicit control over the memory hierarchy. In this section, we
describe the modifiers associated with load/store operations which are used to control the
placement of data in the memory hierarchy as well as to specify load latencies. A discussion of
how to use these modifiers in compiling programs and the expected benefits can be found in
[25].

A load operation (except an LDV operation) has two modifiers, which are described below.

1. Latency and source cache specifier: This modifier is used by the compiler to indicate its
view of where the data is likely to be found. Consequently, it also specifies the load
latency assumed by the compiler. In the EPIC version of the architecture, the latency
specification for a load operation is an integral part of the operation. Like other operations,
load operations have architecturally visible latencies. That is, the result of a load operation

32

must be available at the specified time (in the program's virtual time) for a program to
execute correctly. If the result is not available at the specified time, then the processor must
be stalled for the execution to be correct. Unlike other operations, there are more than one
class of load operations to accommodate different latencies needed to communicate with
different levels in the memory hierarchy. In the superscalar model of the architecture, the
latency specification has no bearing on the correct execution of a program.

2. Target cache specifier: This modifier is used by the compiler to indicate its view of the
highest level in the memory hierarchy where the loaded data should be left for use by
subsequent memory operations. This is a hint to the hardware and has no bearing on the
correct execution of the program.

Store operations have only one modifier, namely, target cache specifier. As with the load
operations, it is used by the compiler to specify the highest level in the hierarchy where the
stored data should be left for use by the subsequent memory operations.

Each of these modifiers can be one of the following:

• V1 for data prefetch cache,

• C1 for first level data cache,

• C2 for second level data cache, and

• C3 for main memory.

10.3 Standard load and store operations

Table 14 describes the set of standard load and store operations. All these operations take a fully-
resolved virtual memory address as an argument. For fixed-point (or integer) values, the
operation repertoire include byte, half-word and word operations at all levels of the memory
hierarchy. Note that fixed-point load/store operations can also be used to load control registers
from the memory and to store control registers in the memory. For floating-point values, the
repertoire includes both single-precision and double-precision operations, again at all levels of
the memory hierarchy. All these operations have a predicate input that guards their execution.
Load operations can be issued speculatively, but there are no speculative stores.

Table 14: Standard load and store operations

Opcode Operation description I/O description Sp Opcode semantics

L
B | H | W
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Load GPR or CR
byte, half-word, or word
latency and source cache specifier
target cache specifier

P? I : IC Y dest1 = Mem[src1](B|H|W)

FL
S | D
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Load FPR
single or double precision
latency and source cache specifier
target cache specifier

P? I: F Y dest1 = Mem[src1](S|D)

S
B | H | W
V1 | C1 | C1 | C3

Store GPR or CR
byte, half-word, or word
target cache specifier

P? I, ICL : N Mem[src1](B|H|W) = src2

FS
S | D
V1 | C1 | C1 | C3

Store FPR
single or double precision
target cache specifier

P? I, F: N Mem[src1](S|D) = src2

33

An important point to note is that byte and half-word load operations are "unsigned" loads in the
sense that they zero-extend the loaded value to convert it into a 32-bit quantity. Explicit sign-
extension using the appropriate EXTS operation (see Section 8) must be performed to use the
loaded value as a signed value.

As described in Section 3.2, memory operations within an instruction are executed in an order
that is consistent with their sequential left-to-right order of execution.

10.4 Post-increment load and store operations

Post-increment operations are similar to the standard load/store operations as far as their memory
access behavior is concerned. However, they have the additional capability to compute new
addresses for subsequent load/store operations. The new address is the sum of the accessed
memory address and a displacement, which can be either a literal or a value stored in a GPR. The
new address is deposited in the specified destination register, which may or may not be identical
to the source address register. Table 15 describes post-increment load and store operations.

Table 15: Post-increment load and store operations

Opcode Operation description I/O description Sp Opcode semantics

LI
B | H | W
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Load GPR or CR and increment
byte, half-word, or word
latency and source cache specifier
target cache specifier

P? I, ICL : IC, I Y dest1 = Mem[src1](B|H|W)
dest2 = src1 + src2

FLI
S | D
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Load FPR and increment
single or double precision
latency and source cache specifier
target cache specifier

P? I, ICL : F, I Y dest1 = Mem[src1](S|D)
dest2 = src1 + src2

SI
B | H | W
V1 | C1 | C1 | C3

Store GPR or CR and increment
byte, half-word, or word
target cache specifier

P? I, ICL, ICL : I N Mem[src1](B|H|W) = src2
dest1 = src1 + src3

FSI
S | D
V1 | C1 | C1 | C3

Store FPR and increment
single or double precision
target cache specifier

P? I, F, ICL : I N Mem[src1](S|D) = src2
dest1 = src1 + src3

10.5 Prefetch via loading to register 0

Prefetch or non-binding load of a memory address to any cache level in the hierarchy can be
done by simply loading the value to static register 0 in either a GPR file or a FPR file. Note that
static register 0 is a bit-bucket in both GPR and FPR files.

10.6 Support for run-time memory disambiguation

Potential dependences between memory operations are often a limiting factor in exploiting the
parallelism in EPIC or superscalar architectures. Specifically, a load operation is potentially
dependent upon all stores that precede the load in a program and thus, cannot be scheduled
before these stores. This makes it difficult to mask the latency of a load operation. Compile-time
memory disambiguation may alleviate the problem. However, compile-time memory
disambiguation is a difficult problem and often gives inconclusive results, especially in
languages like C which make heavy use of pointers. The HPL-PD architecture provides a run-
time memory disambiguation capability, which permits compilers to schedule a load before

34

potentially aliasing stores even if conclusive aliasing information is not available at compile-
time. The run-time disambiguation mechanism is similar to the memory conflict buffer proposed
by Chen in his thesis [13], which describes several possible implementations and contains some
results on the utility of such a mechanism. Silberman et al. [15] also describe a similar
mechanism.

At the architecture level, the support for run-time disambiguation consists of three related
families of operations, called data speculative load (LDS), data verify load (LDV) and data
verify branch (BRDV). As described in more detail in Section 10.6.2, an LDS operation is used
in conjunction with either an LDV or a BRDV operation. An LDS-LDV pair is used to schedule
a load before potentially aliasing stores. Both operations in a pair specify the same memory
address and the same destination register. Moreover, they have the same width modifier (i.e.,
byte, half-word, etc.). An LDS-BRDV pair permits not only a load but also operations that
depend upon the loaded value to be scheduled before potentially aliasing stores. In this case, the
BRDV operation is used to branch to a piece of compiler-generated compensation code.

10.6.1 LDS, LDV and BRDV operations

Table 16 lists the various forms of LDS and LDV operations. Table 17 describes BRDV
operations and is an excerpt from Table 20, which describes all branch operations.

Table 16: Load operations related to run-time memory disambiguation

Opcode Operation description I/O
description

Sp Opcode semantics

LDS
B | H | W
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Data speculative load to GPR
byte, half-word, or word
latency and source cache specifier
target cache specifier

P? I : I Y dest1 = Mem[src1](B|H|W)
Also see the text

FLDS
S | D
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Data speculative load to FPR
single or double precision
latency and source cache specifier
target cache specifier

P? I: F Y dest1 = Mem[src1](S|D)
Also see the text

LDSI

B | H | W
V1 | C1 | C2 | C3
S1 | C1 | C2 | C3

Data speculative load to GPR and
increment
byte, half-word, or word
latency and source cache specifier
target cache specifier

P? I, ICL : I, I Y dest1 = Mem[src1](B|H|W)
dest2 = src1 + src2
Also see the text

FLDSI

S | D
V1 | C1 | C2 | C3
V1 | C1 | C2 | C3

Data speculative load to FPR and
increment
single or double precision
latency and source cache specifier
target cache specifier

P? I, ICL : F, I Y dest1 = Mem[src1](S|D)
dest2 = src1 + src2
Also see the text

LDV
B | H | W

Data verify load for GPRs
byte, half-word, or word

P? I : I Y See the text

FLDV
S | D

Data verify load for FPRs
single or double precision

P? I : F Y See the text

35

Table 17: Branch operations related to run-time memory disambiguation (excerpt from Table 20)

Opcode Operation description I/O
description

Sp Opcode semantics

BRDVI Data verify branch for use with data
speculative loads to GPRs

 P? B, I : N See the text.

BRDVF Data verify branch for use with data
speculative loads to FPRs

 P? B, F : N See the text.

To describe the ("micro") semantics of these operations, it is necessary to introduce the notion of
LDS log. In this report, we describe the LDS log in an abstract way and only in as much detail as
is necessary to explain the semantics of operations introduced in this section. There are several
ways to implement the LDS log; see, for example, [13].

The LDS log records information about a subset of LDS operations that has been already issued.
The size of the log, i.e., the number of entries in the log, depends on the implementation and is
not architecturally visible. Each entry in the log contains (at least) the following two fields to
store the information about an LDS operation:

1. Target register: This field contains the register loaded by the operation.

2. Address: This field contains either the memory address referenced by the operation or a
"syndrome" derived from the address. (See the discussion related to stores.)

In addition, there is a way to mark an entry as valid or invalid. Operations that either access or
modify the LDS log include all the LDS, LDV and BRDV operations as well as the store
operations.

Now, we describe the semantics of the three classes of operations introduced in this section as
well as the action of store operations on the LDS log.

Data speculative load operations:

As is evident from the first two rows of Table 16, there is a data speculative load operation
corresponding to each load operation described in Section 10.3. The source and destination
specification for an LDS operation is identical to that for the corresponding load operation.
Similarly, all the modifiers associated with these operations have the same meaning as in the
case of load operations. The semantics of an LDS operation is as follows.

1. Like a load operation, the operation loads the datum from the specified memory address
into its destination register.

2. In addition, the processor performs the following two actions on the LDS log. First, it
invalidates any entry whose target register field is the same as the destination register of
the LDS operation. Second, it may add the LDS operation to the log by storing the
destination register and the memory address (or its syndrome) referenced by the LDS
operation into an entry in the log. Whether the operation is added to the log or not depends
upon how the log entries are managed, what happens when the log is full, etc. All these
aspects of the LDS log are completely implementation dependent.

Like post-increment load operations, there are also post-increment LDS operations. These
operations perform all the actions described above and, in addition, compute new addresses for
subsequent memory operations. Note that post-increment LDS operations have two destinations.

36

In the case of a post-increment LDS operation, the destination register in the above description
refers to the first destination, since it is the one that is being loaded from the memory.

Also note that all LDS operations listed in the table have a (control) speculative version and have
a predicate input that guards their execution.

Action of store operations on the LDS log:

When a store operation executes, the processor performs the following actions on the LDS log.
For each valid entry in the log, it checks the memory address (or the syndrome) stored in the
entry and the memory address (or its syndrome) referenced by the store operation to see if the
store operation potentially writes into a physical memory location that was accessed by the LDS
operation corresponding to the entry. If the answer is yes, then the processor invalidates the
entry. How addresses are compared depends upon the implementation. The only requirement is
that the address comparison be safe in the sense that it must detect all cases in which the store
operation and the LDS operation access a common physical memory location. A couple of
important cases to note are as follows. First, if the system permits two different virtual addresses
to map to the same physical memory location, then the address comparison must detect these
cases. Second, it is possible that an LDS operation and a store operation access overlapping but
not exactly the same locations. For example, the LDS operation reads a word from the memory
and the store operation writes a byte within that word. Again, the address comparison must
detect such aliasing cases. For these reasons, it may be necessary to use an inexact but
conservative approach based on syndromes derived from virtual addresses.

Data verify load operations:

The last two rows of Table 16 lists the various forms of data verify load operations supported by
the architecture. Broadly speaking, these operations behave like conditional load operations.
Each of these operations has one source, which specifies a memory address, and one destination.
Also, all these operations have a (control) speculative version and have a predicate input to guard
their execution.

The execution of an LDV operation proceeds as follows:

1. The processor checks the LDS log to see if there is a valid entry whose target register field
is identical to the destination register specified in the LDV operation. Note that there can
be at most one such entry. If so, the processor may treat the operation as a NOP.
Specifically, the processor need not update the destination register.

2. If there is no such entry, then the processor must update the destination register.
Furthermore, it must ensure that the value deposited in the register is identical to the one
returned by an appropriate type of load (byte, half-word, etc.) from the memory address
specified in the operation. There are a number of ways to do this; the simplest being to
issue a load to the memory. Note that an LDV operation has all the information, i.e., the
memory address, the width of the datum to fetch and the destination register, that is
necessary to issue a load. It is the compiler's responsibility to ensure that these arguments
to an LDV operations are identical to the ones given to the corresponding LDS operation.

3. Finally, the processor invalidates any valid entry whose target register field is identical to
the destination register specified in the LDV operation.

We assume that the architectural latency of an LDV operation is less than the latency of a load
from the first level cache and is comparable to the latency of, say, an integer add operation. The
rationale is this. In the expected use of these operations, the first case described above will be the

37

predominant case and the second case is expected to occur very rarely. In the first case, the
processor simply has to check if the LDS log contains an entry whose target register field
matches the destination register of the LDV operation. This can be done in much less time than
the time taken to execute a load operation. Note that if the second case applies, then the
processor may need to stall to ensure that the destination register contains a valid result.

LDV operations don't have source and target cache specifiers. Also, there are no post-increment
versions of these operations. Since LDV operations are expected to be used in conjunction with
LDS operations, it suffices to provide these capabilities only with LDS operations.

Data verify branch operations:

The natural place to describe these operations is the section on the branch architecture (Section
11). However, these operations are closely tied to the run-time disambiguation mechanism, and
thus, we describe them in this section. Unfortunately, that creates a forward reference that is hard
to avoid. To fully understand these operations, it is necessary to understand how branches are
performed in the HPL-PD architecture, for which we refer the reader to Section 11.

Table 17 lists the two forms of data verify branch operations supported by the architecture. These
operations behave like conditional branches and are used to branch to a piece of compiler-
generated compensation code to ensure the correct execution of a program. Each of these
operations have two sources. The first source is a branch target register (BTR) containing the
target address. The second source is a general-purpose or a floating-point register and is used as
a key to find a matching entry in the LDS log.

The execution of a data verify branch proceeds as follows:

1. The processor checks the LDS log to see if there is a valid entry whose target register field
is identical to the second source register specified in the BRDV operation. Note that there
can be at most one such entry. If so, the processor need not branch to the target address.

2. If there is no such entry, then the processor does branch to the target address.

3. Finally, the processor invalidates any valid entry whose target register field is identical to
the second source register specified in the BRDV operation.

Note that these operations cannot be issued speculatively, but they do have a predicate input to
guard their execution.

Both LDV and BRDV operations invalidate matching entries and thus, to a limited extent,
provide a programmatic way to manage entries. However, that is not sufficient because the
number of entries in the LDS log is not architecturally visible. A point to note is that the
expected usage of these operations doesn't require that an LDS operation has a matching LDV
operation on all execution paths. This may happen, for example, if the LDS operation has been
scheduled (control) speculatively. Thus, the LDS log may contain entries that are no longer
useful on an execution path, and the implementation should provide a way (e.g., LRU tags) to
expunge such entries.

10.6.2 Expected usage and compiling issues

We explain the expected usage of the three classes of operations introduced in the last section
using a simple example. The left column below shows the unscheduled code for the example. To
simplify the exposition, we omit modifiers associated with operations and assume that all

38

registers are general-purpose registers. The right column shows a naive schedule assuming the
following latencies for operations: 2 cycles for loads, 1 cycle for adds and 1 cycle for stores.

Original code for the example Schedule
 Cycle Instruction

r1 = L(a1); / * First load * /

r2 = ADD(r1, r5);

S(a2, r2); / * Store * /

r3 = L(a3); / * Second load * /

r4 = ADD(r3, r5);

S(a4, r4);

1

2

3

4

5

6

7

8

r1 = L(a1);

− − − −
r2 = ADD(r1, r5);

S(a2, r2);

r3 = L(a3);

− − − −
r4 = ADD(r3, r5);

S(a4, r4);

The naive schedule can be improved by issuing the second load in an earlier cycle, i.e., before
the store that preceded the load in the original program. Reordering a store-load pair, however,
requires a compile-time proof they don't reference the same memory address. As mentioned
earlier, compile-time memory disambiguation is a difficult problem and often gives inconclusive
results. If the compile-time analysis fails, then the schedule given above is the best a compiler
can do.

The run-time disambiguation mechanism permits efficient code generation in cases where the
compile-time analysis fails. Consider the above example. To schedule the second load before the
store, we replace the load by two operations, an LDS operation and an LDV operation. The
resulting code is given below. Note that both operations have the same source and destination as
the original load operation.

Code with the load replaced by an
LDS-LDV pair
r1 = L(a1);

r2 = ADD(r1, r5);

S(a2, r2);

r3 = LDS(a3);

r3 = LDV(a3);

r4 = ADD(r3, r5);

S(a4, r4);

In general, it is the compiler's responsibility to ensure that the parameters specified in an LDV
operation, i.e., the destination register, the memory address and the width of the datum to fetch,
are identical to those specified in the corresponding LDS operation. Note that the address register
specified in an LDV operation need not be the same as the one specified in the corresponding
LDS operation; the only requirement is that the memory address supplied to the two operations
be the same.

39

The LDS operation is not constrained by the preceding store even if they alias and can be
scheduled before the store. On the other hand, the LDV operation must obey the following
scheduling constraints in order to ensure that the subsequent operations dependent upon the
destination register get the correct value. The first constraint is that the LDV operation must be
scheduled so that it is effectively issued after the store operation. Note that, since memory
operations in an instruction are prioritized from left to right (see Section 3.2), the LDV operation
can be issued in the same cycle as the store operation. The second constraint relates to when the
LDV operation can be scheduled relative to the LDS operation. For each machine, its mdes
specifies the minimum number of cycles that must be used to separate an LDV operation from
the corresponding LDS operation. If an LDV operation is scheduled closer than the specified
minimum distance, the destination register will contain a non-deterministic value.

The following is a schedule for the code given above assuming that the LDV operation has a
latency of 1 cycle.

Schedule for code with LDS and LDV operations
 Cycle Instruction
1

2

3

4

5

6

r1 = L(a1);

r3 = LDS(a3);

r2 = ADD(r1, r5);

S(a2, r2); r3 = LDV(a3);

r4 = ADD(r3, r5);

S(a4, r4);

It is instructive to go through the execution of the above program in detail. There are following
two cases to consider.

1. Assume that, in the original program, the second load doesn't alias with the preceding store.
In this case, the LDS operation loads the correct value in register r3; and if things go right,
the LDV operation behaves like a NOP. The detailed execution, in this case, proceeds as
follows. The LDS operation loads the register. In addition the processor adds the LDS
operation to the log. When the store executes, the processor doesn't invalidate the entry,
since the store and the LDS operation don't alias. When the LDV operation executes, it
finds the matching entry in the log, which guarantees that there were no aliasing stores.
The LDV operation, then, performs no action on the register r3.

The other case to consider is when either the processor doesn't add the LDS operation to
the log or the entry is replaced before the LDV operation executes. In this case, the LDV
operation doesn't find the matching entry and effectively re-issues the load, since it cannot
ensure that there were no potentially aliasing stores.

2. Now assume that the load and the store do potentially alias. When the store executes, the
processor invalidates all entries that potentially alias with the store. This guarantees that
the LDV operation will not find a matching entry, and the LDV operation will load the
correct value in the register r3.

Thus, the correct value is available in the register r3 in all cases after the execution of the LDV
operation.

40

Next, we discuss a slightly different issue, namely, register spill. In the usage described above,
the final value in the destination register may come from either the LDS operation or the LDV
operation. Thus, the lifetime of the value extends all the way from the LDS operation to its uses.
However, the register contains an indeterminate (and a potentially incorrect) value from the time
the LDS is executed to the time the corresponding LDV is executed. So the question is whether
the register can be spilled in the usual way or not during this time period. The semantics of these
operations is such that the register can be spilled in the usual way and reused for other
computation including as a target of another LDS-LDV pair. As an example, consider the code
shown in the left column below. The right column shows the code after register allocation.
Register r1 has been assigned to both vr1 and vr2. Furthermore, the register r1 has been spilled
after the LDS operation; spill-addr is the memory address to which r1 has been spilled.

 Code before register allocation Code after register allocation with
spill code inserted

vr1 = LDS(a1) / * First LDS * /

vr2 = LDS(a2) / * Second LDS * /

M

vr2 = LDV(a2)

M

vr1 = LDV(a1)

r1 = LDS(r2) / * First LDS * /

S(spill - addr, r1);

r1 = LDS(r3) / * Second LDS * /

M

r1 = LDV(r3)

M

r1 = L(spill - addr)

r1 = LDV(a1)

The code in the right column produces the correct result. The important point to note is that the
entry corresponding to the second LDS will be removed by the corresponding LDV (i.e., the first
LDV) and will not be visible to the last LDV. Thus, the last LDV effectively re-issues a load to
r1. The above scenario also works for the case when r1 is used for other types of computation. In
that case, the load restores the contents of r1 and the LDV operation ensures that the effect of
potentially aliasing stores is captured. Although the usual spill strategy works, it is not the most
efficient one. There are more efficient strategies; for example, the compiler can simply delay the
first LDS operation. This is not specific to LDS and LDV operations and applies equally well in
the case of ordinary load operations.

Although the above discussion assumes straight-line code, branches and program merges don't
present additional problems. An LDS operation can be scheduled before a branch, in which case
it becomes a (control) speculative operation. Similarly, it can be scheduled before a merge point,
in which case it is replicated on all execution paths merging at that point. In general, if each
execution path leading to an LDV operation satisfies the following constraints, then the value
stored in the destination register will be correct. First, there is a corresponding LDS operation
that targets the same register. Second, there are no other writes to the register between the LDS
and LDV operation unless the register is spilled in the way described above.

Several points to note about the use of these operations:

1. The code sequence given below produces a non-deterministic result in r1. The value in r1 is
either the result of the add or the value deposited by the LDV operation; it all depends

41

upon the state of the LDS log at the time the LDV operation is executed. The expected
usage described above precludes such uses.

r1 = LDS(a1);

M

r1 = ADD(r2, r3);

M

r1 = LDV(a1);

2. In the following code sequence, the second LDS effectively masks the first LDS. That is, a
subsequent LDV operation never sees the log entry corresponding to the first LDS.

r1 = LDS(a1);

r1 = LDS(a2);

Now, consider the following code. In this case, the second LDV always re-loads the
register, since the first LDV invalidates any matching entry.

r1 = LDV(a1);

r1 = LDV(a2);

3. As described earlier, nested pairs of LDS-LDV operations targeting the same register
produce correct result, though in an inefficient way. On the other hand, non-nested uses
may produce unexpected and potentially incorrect result.

The run-time disambiguation mechanism also supports a more general form of code motion. Not
only a load operation but also operations that depend upon the loaded value can be scheduled
before preceding stores that may alias with the load. The general form of code motion uses
BRDV operations instead of LDV operations to ensure the correct execution of the program. For
an LDS operation, the corresponding BRDV operation detects if a store does alias with the LDS
operation. If so, then it transfers the control to a piece of compiler-generated compensation code.

Consider the example given at the beginning of this section. We can transform the original code
into the code shown in Figure 1. The figure shows the code as a control-flow graph in order to
clearly illustrate the relation between various parts of the code. The transformation replaces the
original load with LDS and BRDVI operations and splits the original code into three basic
blocks. The basic block labeled "before" contains the code before the original load operation as
well as the LDS and BRDVI operations, and the basic block labeled "after" contains the code
after the original load operation. The basic block labeled "comp" contains the compensation
code. The compensation code re-issues the load and then branches back to the code after the
original load. The BRU operation in the compensation code performs an unconditional branch
(see Section 11).

The transformed code can be scheduled in the usual way as long as the scheduler recognizes the
following. First, the LDS operation is not constrained by the preceding store. Second, the
BRDVI operation is constrained by both the preceding store and the LDS operation. Third, the
compensation code is rarely executed and should be treated as such.

Operations that are flow-dependent upon the LDS operation can be scheduled before the
preceding store as long as all other scheduling constraints are met. Consider, for example, the
add operation in the basic block labeled "after". The operation is flow-dependent on the load, but

42

doesn't depend on the store. Thus, this operation can be scheduled before the store. To do so, the
operation must be moved before the BRDVI operation. Code motion across a BRDV operation
follows the standard rules of code motion across a branch. For example, if the add operation is
moved before the BRDVI operation, then it must be replicated in the compensation code.
Moreover, the values of its operands must be preserved (not necessarily in the same registers) in
order to execute the corresponding operation in the compensation code.

Before:
r1 = L(a1);
r2 = ADD(r1, r5);
 S(a2, r2);
r3 = LDS(a3)
BRDVI(Comp, r3);

Comp:
r3 = L(a3);
BRU(After);

After:
r4 = ADD(r3, r5);
 S(a4, r4);

Figure 1: Transformed code illustrating the use of LDS and BRDV operations

The following is a schedule for the transformed code assuming that branches have a latency of 1
cycle. Note that both the LDS operation and the add operation in the basic block labeled "after"
are scheduled before the preceding store.

General form of code motion

Main code Compensation code
Cycle Instruction Cycle Instruction

1

2

3

4

5

Before:

r1 = L(a1); r3 = LDS(a3);

− − − −
r2 = ADD(r1, r5); r4 = ADD(r3, r5);

 / * The second add should be marked

 speculative to defer exceptions. * /

S(a2, r2); BRDVI(Comp, r3);

/ * Branch to compensation code * /

After:

S(a4, r4);

1

2

3

4

Comp:

r3 = L(a3);

− − − −
r4 = ADD(r3, r5);

BRU(After);

/ * Branch back * /

43

An important point to note relates to exceptions. Since an LDS operation is executed before
potentially aliasing stores, it may return a value that is programatically incorrect. Thus,
operations that use the loaded value may produce spurious exceptions, that is, exceptions that
would not be generated in the original program. Such spurious exceptions should not be signaled.
It is the compiler's responsibility to ensure that the signaling of any exception due to the use of
the value returned by an LDS operation is deferred until the corresponding BRDV operation
executes and doesn't take. The speculative execution mechanism described in Section 3.4
provides the necessary architectural support.

We conclude this section with several comments. The first comment relates to the action taken
on the LDS log at context-switches and procedure calls. At a context-switch, the implementation
has two options. Either it can save-restore the log or it can simply invalidate all entries, in which
case the appropriate registers will be re-loaded by the corresponding LDV operations. In the case
of a procedure call, we assume that no action is taken on the LDS log, and it is the compiler's
responsibility to ensure that a program executes correctly in all cases. A simple way to do this is
to never split an LDS-LDV pair (or an LDS-BRDV pair) across a procedure call.

Second, it may appear that an LDS-LDV pair serves the same purpose as a prefetch to first level
cache followed by a load from the first level cache. The difference is this. The prefetch-load
scheme is unable to mask the latency of the first level cache, since the second load is a load from
the first level cache. The latency of an LDV operation, on the other hand, is less than the latency
of a load from the first level cache and is comparable to the latency of, say, an integer add
operation.

Finally, the run-time disambiguation mechanism is useful only in cases where there is a very
high probability that the original load operation doesn't alias with preceding stores. If that is not
the case, then its use may actually degrade the performance. Thus, its effective use requires a
way, e.g., analysis, profiling, user-directives, to get "probabilistic" aliasing information.

10.7 Memory operations to save/restore and spill registers

This section describes load/store operations that are used for the following two purposes. First,
they are used to save/restore registers as part of the procedure calling convention. Second, they
are used to spill registers to memory and then to reload them back. The standard load/store
operations are not suitable for this purpose because each register in HPL-PD has an associated
speculative tag bit. Like the datum part of a register, the speculative tag bit also must be
saved/restored. More importantly, the semantics of the standard load/store operations are not
what is needed to save/restore registers. As described in Section 3.4, speculative tag bits play an
important role in the semantics of these operations, since the speculative tag bit of a register
determines whether the register holds a valid datum or not. For example, the standard store
operation signals an exception if the speculative tag bit of the register being stored is set. This is
certainly not the semantics we would like in order to save a register to memory, since we simply
want to save the register regardless of the validity of the datum stored in the register. In other
words, the memory operation used to save a register to memory shouldn't examine the
speculative tag bit of the register being stored. Similarly, the operation used to restore registers
from memory shouldn't set the speculative tag bit of the register being loaded. Having separate
opcodes to load the value part of a register makes it possible to load the value part and the tag bit
in parallel or in any order.

Table 18 lists the memory operations used to save and restore registers. All these operations have
a predicate input that guards their execution. Restore operations can be issued speculatively, but,

44

like standard store operations, save operations don't have a speculative version. The operations
described in Table 18 are used to save the datum part of a general-purpose, floating-point, or
branch target register. As mentioned earlier, the speculative tag bit associated with a register is
saved/restored separately.

There are no operations that can be used directly to save/restore predicate registers and
speculative tag bits. The next section describes ways to save/restore them efficiently.

Table 18: Memory operations to save/restore (or spill /unspill) registers

Opcode Operation description I/O description Sp Opcode semantics

SAVE Save a GPR or CR to
memory.

P? I, IC : N Mem [src1] = src2
Don’t look at the speculative tag bit of
src2, i.e., the register being stored. The
tag bit for src1 is treated as in the case
of a standard store operation.

FSAVE Save a FPR to memory. P? I, F : N Mem [src1] = src2
Don’t look at the speculative tag bit of
src2, i.e., the register being stored. The
tag bit for src1 is treated as in the case
of a standard store operation.

BSAVE Save a BTR to memory. P? I, B : N Mem [src1] = src2
Don’t look at the speculative tag bit of
src2, i.e., the register being stored. The
tag bit for src1 is treated as in the case
of a standard store operation.

RESTORE Restore a GPR or CR from
memory.

P? I : IC Y dest1 = Mem [src1]
Don’t touch (i.e., set or clear) the
speculative tag bit of the destination
register. The tag bit for src1 is treated
as in the case of a standard load.

FRESTORE Restore a FPR from
memory.

P? I : F Y dest1 = Mem [src1]
Don’t touch (i.e., set or clear) the
speculative tag bit of the destination
register. The tag bit for src1 is treated
as in the case of a standard load.

BRESTORE Restore a BTR from
memory.

P? I : B Y dest1 = Mem [src1]
Don’t touch (i.e., set or clear) the
speculative tag bit of the destination
register. The tag bit for src1 is treated
as in the case of a standard load.

10.7.1 Code schemas to save/restore and spill predicate registers and speculative tag bits

In this section, we describe code schemas to save/restore as well as to spill predicate registers
and speculative tag bits. The discussion is phrased in terms of predicate registers, but the
schemas described in this section, with some of the opcodes changed appropriately, also apply to
speculative tag bits. Please refer to Tables 5 and 6 in Section 8 for the semantics of various move
operations used in the code schemas in this Section.

45

Save/restore schema

First, we discuss how to save/restore predicate registers, for example, as part of the procedure
calling convention. A simple but inefficient approach is to save/restore predicate registers one at
a time using the schema described below. In the code, px is the predicate register being
saved/restored, addr is the address of the memory location assigned to hold px, and gpry is a gpr
register used as a temporary. In the code used to restore a predicate register, one can use either a
MOVEGBP or a compare-to-predicate operation to move the least significant bit (LSB) of the
GPR to the predicate register.

Code to save a predicate register Code to restore a predicate register

 addr = Address where to save;

 gpry = MOVEPG(px);

 = SAVE(addr, gpry);

 addr = Address from where to restore

 gpry = RESTORE(addr);

 px = MOVEGBP(gpry, 0);

(or px = CMPP.EQ.CN.CC(gpry, 1);)

Although this schema produces the intended results, it is quite inefficient because it requires
three operations for each 1-bit register. Therefore, HPL-PD provides architectural support for a
more efficient approach--it allows access to predicate registers not only one register at a time but
also in groups of 32 using control registers aliases. It is, therefore, possible to save/restore 32
registers at a time giving a 32-fold reduction in the number of operations as compared to the
above approach.

Suppose that we want to save registers numbered from x to y. Since x and y may not be aligned
on 32-bit boundary, we must save/restore only the required registers. While saving the registers
to memory, it is not essential that we save only the required ones, since saving some extra
registers will not lead to incorrect result. On the other hand, we must restore only the required
registers and ensure that no other registers are modified, since that may lead to incorrect results.

The code to save the predicate registers numbered from x to y is given below. In the code, s =
floor(x/32) and n = ceiling(y/32). The code uses register aliases of the form PV(i, j) to refer to
the jth group of 32 register in the ith predicate register file, which were introduced in Section 4.7.
Note that if x and y are not aligned at 32-bit boundary, the code will save some extra registers
before x and after y.

Code to save predicate registers in groups of 32

addrs = Address where to save the first 32 registers in the range;

SAVE(addrs, PV(1, s));

addrs+1 = Address where to save the next 32 registers;

SAVE(addrs+1, PV(1, s+1));

…
addrn = Address where to save the last 32 registers;

SAVE(addrn, PV(1, n));

46

To illustrate the code to restore predicate registers, first suppose that x and y are aligned at 32-bit
boundary. Then the code is similar to the code for saving registers and is as follows:

Code to restore predicate registers in groups of 32 assuming
alignment at 32-bit boundary

addrs = Address where the first 32 registers in the range are saved;

PV(1, s) = RESTORE(addrs);

addrs+1 = Address where the next 32 registers are saved;

PV(1, s+1) = RESTORE(addrs+1);

…
addrn = Address where the last 32 registers are saved;

PV(1, n) = RESTORE(addrn);

On the other hand, if x and/or y are not aligned at 32-bit boundary, then the first and/or the last
restore operation in the code given above is replaced by a two operation sequence in which the
first operation loads 32 bits in a GPR and the second operation writes into the appropriate
predicate registers. For example, suppose x is not aligned on a 32-bit boundary. Then the first
two operations above are replaced by the following code. To restore registers selectively, the
MOVEGCM operation takes a bit-mask that specifies the registers that should be restored.

Code to restore predicate registers that are not aligned at 32-bit
boundary

addr_s = Address where the first 32 registers in the range are saved;

gpry = RESTORE(addrs);

PV(1, s) = MOVEGCM(gpry, mask, PV(1, s));

Spill schema
Code schemas to spill/unspill predicate registers are similar to the ones used to save/restore
predicate registers. As was the case with save/restore schemas, there are two ways to spill
predicate registers. First, we can spill/unspill one register at a time. Second, we can optimize the
spill code and try to spill/unspill multiple registers in one go. Since indices of registers that need
to be spilled are rarely contiguous, it may not be that easy to optimize spill code by spilling
multiple registers simultaneously. In both schemes, the code to spill is identical. We simply store
the corresponding control register alias(s) to memory. Suppose we want to spill the predicate
register px, i.e., the register with index x. Then, assuming n = floor (x/32), the spill code is given
below.

Code to spill one or more predicate registers

addr = Address where to save the register;

SAVE (addr, PV(1, n));

47

The code spills not only the register px, but also other registers “around” px. As pointed out
earlier, spilling some extra registers will not lead to incorrect result. On the other hand, we must
unspill only the required register and ensure that no other registers are modified because that
may lead to incorrect results. Note that the same code can also be used to spill multiple registers
in one step; for example, the above code spills all predicate registers between floor(x/32) × 32 to

ceiling(x/32) × 32 – 1.

Two different code schemas to unspill predicate registers are given in the table below. The three
operation sequence in the left column unspills a single predicate register, p34 in this case. Note
that p34 is the same as the bit at offset 2 in the control register PV(1, 2). MOVEGBP extracts the
bit at offset 2 in gpr23 and stores it in p34. Like the restore schema discussed in the last section,
the three operation sequence in the right column can be used to unspill multiple predicates in one
step by specifying an appropriate mask in the MOVEGCM operation.

Code to unspill a predicate register Code to unspill multiple predicate registers

addr = Address where p34 (i.e.,
 control register PV(1, 2)) is
 spilled

gpr23 = RESTORE(addr);

p34 = MOVEGBP (gpr23, 2);

addr = Spill address;

gpr23 = RESTORE(addr);

PV(1, i) = MOVEGCM (gpr23, mask);

11 Branch architecture
Branch operations are of major concern in designing ILP architectures because branches tend to
interrupt the smooth flow of instructions and thus degrade the performance. The branch
mechanism described in this report is a preliminary attempt to address the efficient
implementation of branches. It permits different pieces of the information related to a branch to
be specified as soon as they become available in the hope that the information can be used to
reduce the adverse effect of the branch, e.g., by prefetching instructions from the potential
branch target. In these respects, it is similar to the one first proposed by IBM's Stretch project [9]
and subsequently by Young and Goodman [10]. However, we believe that the efficient
implementation of branch operations in ILP architectures is an area wide open for research.
Issues to be investigated include policies for instruction prefetch and instruction cache
management, efficient handling of multiple branches in a cycle, etc. The branch mechanism
described in this report is simply a starting point to enable the research in this area. We expect it
to evolve as more experience is gained.

In the HPL-PD architecture, a branch is performed in multiple steps--three steps for a conditional
branch and two steps for unconditional branches. The steps involved in a conditional branch are
as follows:

1. Specification of the target address: Prepare-to-branch (PBR) operations described in
Section 11.1 are used for this purpose. This step specifies the branch target address in
advance of the branch point allowing a prefetch of instructions from the target address.
Hints to control instruction prefetch can also be specified at this step. The architecture

48

provides separate 64-bits wide branch-target registers to store the information provided at
this step.

2. Computation of branch condition: The branch condition is stored in a predicate register and
is computed by an appropriate type of compare-to-predicate operation (see Section 9).

3. Transfer of control: Branch operations perform the actual transfer of control if the branch is
taken. The architecture provides several types of branch operations including unconditional
and conditional branches, branch and link for subroutine calls, and special branch
operations to support software pipelining of loops. Branch operations are discussed in
Section 11.2.

An unconditional branch (or a jump) doesn't involve the computation of the condition, and thus,
consists of only the first and last steps.

As discribed in Section 3.2, the architecture permits multiple branch operations in an instruction.
Moreover, the latency of a branch operation is an architectural parameter that is specified for
each machine in its mdes. A significant point to note is that a branch takes effect after exactly n
cycles where n is the latency of the branch. That is, branch operations always have the "equals"
semantics, even in "less-than-or-equals" machines. Branch operations are executed in a parallel
pipelined manner with the following implications. First, consider the execution of an instruction
containing multiple branch operations. In this case, the result is well-defined only when at most
one operation takes the corresponding branch. If more than one branch operations specify that
the corresponding branches be taken, then the result of the execution is undefined. It is the
compiler's responsibility to ensure that, in an instruction, at most one branch takes. Second,
branch operations in the delay slots of a branch are executed in a normal way, i.e., they are not
squashed.

11.1 Prepare-to-branch operations (PBRR, PBRA)

There are two prepare-to-branch operations: PBRR and PBRA. Their semantics are identical
except for the way they interpret target address. PBRR is used to prepare branches to PC-relative
addresses, whereas PBRA is used to prepare branches to absolute addresses. Both these
operations specify a target BTR, which is used to communicate the information from a prepare
operation to the corresponding branch operation. The arguments to these operations are as
follows:

1. Target address: This can be either a literal or a GPR containing the address. The target
address must be the starting address of an instruction. There is no provision to branch to an
operation in the middle of an instruction.

2. Static branch prediction: This is a 1-bit literal with the following interpretation: a value of 1
means the branch is predicted taken, 0 means it is predicted not taken. It is a hint to control
the instruction prefetch and its use is machine-dependent.

These operations compute the effective address, and store the computed address and the static
prediction into the specified BTR.

Table 19 lists the prepare-to-branch operations. Both these operations have a predicate input that
guards their execution, and they can be issued speculatively.

49

Table 19: Prepare to branch operations

Opcode Operation description I/O description Sp Opcode semantics

PBRR Prepare a branch to a PC-relative
address

 P? IL, L : B Y dest1 = {PC + src1, src2}

PBRA Prepare a branch to an absolute
address

 P? IL, L : B Y dest1 = {src1, src2}

11.2 Branch operations

Branch operations perform the actual transfer of control. All the branch operations are listed in
Table 20 and are described in some detail in the subsequent subsections.

Each branch operation specifies a source BTR, which contains the branch target address. Most
branch operations are predicated, that is, they have a predicate input that guards their execution.
Exceptions are the branch operations used in the software-pipelining of loops; their execution
cannot be nullified. Predicated branch operations simplify the code generation in many cases.
Note, however, that predicated branches are not a necessity as the same effect can be obtained
using un-predicated branches. Branch operations cannot be issued speculatively.

Table 20: Branch operations

Opcode Operation description I/O
description

Sp Opcode semantics

BRU Unconditional Branch (jump) P? B : N PC = src1.address
BRCT Conditional branch on predicate = 1

(true)
 P? B, P : N if src2

 then PC = src1.address
BRCF Conditional branch on predicate = 0

(false)
 P? B, P : N if !src2

 then PC = src1.address
BRL Branch and link P? B : B N dest1 = {return address,

 default value}
PC = src1.address

BRLC Branch on zero loop count and
decrement loop count

 P? B : N if LC != 0
 then LC = LC -1
 PC = src1.address

BRF

B | F
B | F
B | F

To support software-pipelining of
counted loops
Continue_dir modifier
Ramp_dir modifier
Stop_dir modifier
B means branch; F means fall-through

 B : P N See the text.

BRW

B | F
B | F
B | F

To support software-pipelining of
loops with exit
Continue_dir modifier
Ramp_dir modifier
Stop_dir modifier
B means branch; F means fall-through

 B, P, P : P N See the text.

BRDVI Data verify branch for use with data
speculative loads to GPRs

 P? B, I : N See the text.

BRDVF Data verify branch for use with data
speculative loads to FPRs

 P? B, F : N See the text.

50

11.2.1 Unconditional branch operation (BRU)

This operation jumps to the target address stored in the specified BTR.

11.2.2 Conditional branch operations (BRCT, BRCF)

There are two forms of conditional branch operations: BRCT and BRCF. The first branches if
the branch condition is true; the second if the branch condition is false. The branch condition is
available in the specified predicate register. Having both operations seems unnecessary as one
can simulate the other. However, having both forms makes it easy to perform certain
optimizations, e.g., re-ordering of basic blocks so that the most likely path is the fall-through
path.

11.2.3 Branch and link (BRL)

This operation is used for subroutine call. In addition to transferring the control to the callee, it
also prepares the branch that returns to the caller. The operation specifies a source BTR and a
target BTR. First, the operation computes the return address and stores it in the address field of
the target BTR. The branch prediction field of the target BTR is set to some default value. Then,
it transfers control to the address specified in the source BTR.

To return to the caller, the callee simply executes an unconditional branch using the BTR
prepared by the corresponding branch and link operation. By convention, compilers may use a
specific register as the return register.

11.2.4 Branch on loop count (BRLC)

It is used to close a counted loop that has not been software-pipelined. If the control register LC
contains a non-zero value, then it decrements LC and transfers the control to the specified
address.

11.2.5 Branch operations to support software-pipelining of loops (BRF and BRW)

This section provides a brief description of the branch operations provided to support software
pipelining of both counted loops and loops with exits. The architecture provides two classes of
operations, called BRF and BRW. Operations in the BRF class are used in the case of counted
loops (e.g., DO, For), whereas operations in the BRW class are used for loops with exits (e.g.
While, Repeat-until). The code-schema paper by Rau et. al. [26, 27] contains a detailed
description of the semantics of these operations and describes how they are used in various code
schemas for software-pipelining of loops. See also [28] for software-pipelining of loops with
exits.

BRF class of operations:

Three modifiers, called continue_dir, ramp_dir and stop_dir, are used to specify operations in
this class. Each of these modifiers can be one of the following: B for branch and F for fall-
through. These modifiers determine the sense of the branch, i.e., whether to take a branch or fall-
through, at three distinct phases in the execution of a software-pipelined loop. This
parameterization is used to accommodate distinct branch requirements for forward and backward
branches and to accommodate differing strategies with respect to the flow of control within the
prolog, kernel and epilog portions of a software-pipelined loop.

51

Each of these operations specify one source and one destination. The source is a BTR containing
the branch address. The destination is a predicate register that is used to enable or disable the
next (source) iteration. Note that these operations execute unconditionally, i.e., they don't have a
predicate input to guard their execution. Figure 2 describes the detailed semantics of these
operations.

RRB = RRB - 1;
Dest1 = 1;
LC = LC -1;

Comments:
Src1 is a BTR; Dest1 is a predicate register.
Branch address = src1.address

RRB = RRB - 1;
Dest1 = 0;
ESC = ESC -1;

LC > 0
False

True

Begin

ESC > 0
False

True
ESC = 0

RRB = RRB - 1;
Dest1 = 0;
ESC = ESC -1;

True

False

Ramp_dir = B:
 Branch taken
Ramp_dir = F:
 Branch not taken

Continue_dir = B:
 Branch taken
Continue_dir = F:
 Branch not taken

Stop_dir = B:
 Branch taken
Stop_dir = F:
 Branch not taken

Continue Ramp_down Stop

Figure 2: Semantics of BRF class of operations

If the loop count (LC) is not zero, then a new loop iteration is initiated. In this case, a BRF
operation follows the path from the begin node to the node marked continue. That is, it performs
the following actions:

1. Decrements the rotating register base (RRB) to implement the dynamic single assignment
(see [29]).

2. Sets the destination predicate register to 1 in order to enable the first stage of the new
iteration.

3. Decrements the loop count.

4. Starts the new iteration either by branching to the specified address or by falling through.
The modifier continue_dir determines the sense of the branch (i.e., branch or fall through).

52

If LC is equal to or less than zero, the loop is executed an additional ESC number of times to
drain the pipeline. This is achieved in a way similar to the normal execution of the loop except
that the destination predicate is set to 0 in order to suppress the issuing of a new loop iteration.
See the path from the begin node to the node marked ramp_down. Note that, in this case,
ramp_dir determines the sense of the branch.

If ESC is equal to or less than zero, the execution of the loop is complete. In this case, a BRF
operation follows one of the paths from the begin node to the node marked stop, and the modifier
stop_dir determines the sense of the branch.

Although the architecture provides all combinations of the three modifiers, the combinations
listed in Table 21 are the ones used in various code schemas described in [26]. The full
generality is provided to facilitate research in this area.

Table 21: Useful BRF operations

Continue_dir Ramp_dir Stop_dir

B B F
B F F
F B B
F F B
F F F

Historically, the first operation in the table has been referred to as Brtop, and the last as Nexti.
Strictly speaking, Nexti is not a branch operation as it always falls-through to the next
instruction. However, its semantics is so similar to other BRF operations that it is treated like a
branch operation.

BRW class of operations:

These operations are similar to the operations in the BRF class, and the last section contains
more details about the modifiers used to specify these operations. Each of these operations
specify three sources and one destination. The first source is a BTR containing the branch
address. The second source is a predicate register, and it is used to determine if the previous
iteration corresponds to a source iteration or to the epilog part of the loop. The third source,
again a predicate register, contains the result of the compare operation that determines whether to
exit the loop or not. The destination is a predicate register that is used to enable or disable the
next (source) iteration. The second source and the destination are related in the sense that the
destination of the branch operation in one iteration is the source of the branch operation in the
next iteration. Note that these operations execute unconditionally, i.e., they don't have a predicate
input to guard their execution.

The detailed semantics of these operations is described in Figure 3 and is similar to the semantics
of BRF operations. The main difference is that the LC > 0 condition is replaced by conditions
that check the source predicates in order to determine whether to issue a new iteration or not.

53

True

False

Begin

Src3

Src2

ESC > 0
False

False

True

Comments:
Src1 is a BTR; Src2, Src3 and Dest1 are predicate registers.
Branch address = src1.address

TrueRRB = RRB - 1;
Dest1 = 1;

RRB = RRB - 1;
Dest1 = 0;
ESC = ESC -1;

RRB = RRB - 1;
Dest1 = 0;
ESC = ESC -1;

True
ESC = 0

True

False

Ramp_dir = B:
 Branch taken
Ramp_dir = F:
 Branch not taken

Continue_dir = B:
 Branch taken
Continue_dir = F:
 Branch not taken

Stop_dir = B:
 Branch taken
Stop_dir = F:
 Branch not taken

Continue Ramp_down Stop

Figure 3: Semantics of BRW class of operations

11.2.6 Branch operations used in run-time disambiguation mechanism (BRDVI, BRDVF)

These operations are part of the run-time disambiguation mechanism described in Section 10.6,
which contains a detailed description of these operations. BRDVI is used in conjunction with
data speculative loads to GPRs, and BRDVF is used with data speculative loads to FPRs.

11.3 Usage and compiling issues

Prepare-to-branch operations are amenable to some of the traditional code optimizations,
especially partial redundancy elimination and loop invariant removal. Several prepare-to-branch
operations that correspond to branches to the same address can be combined into one operation.
Similarly, the prepare-to-branch operation for a branch inside a loop can be moved out of the
loop.

54

A prepare-to-branch operation, whenever possible, should be scheduled so that there is just
enough time, between the prepare operation and the corresponding branch, to prefetch
instructions from the target address. A similar comment applies to compare operations that
compute branch conditions. Note that there are no ordering constraints between the prepare-to-
branch operation for a branch and compare operations that compute the corresponding branch
condition; they can be scheduled in any order.

Like GPRs or FPRs, branch target registers may need to be saved and restored depending upon
the procedure calling convention. As described in Section 10.7, the architecture provides two
memory operations, called BSAVE and BRESTORE, for this purpose. Note that, for each BTR,
the architecture also defines a pair of control registers that are synonymous with the lower and
upper half of the BTR. These control register aliases also can be used to save and restore BTRs.

As mentioned in Section 3.2, it is the compiler's responsibility to ensure that, in an instruction, at
most one branch operation takes the branch. As an example, consider the sequence of branches
in the left column. In the code, B1, B2, B3 are branch target registers and p1, p2, p3 are predicate
register containing the branch conditions.

 Control dependent branches Transformed code with fully
resolved branches

BRCT(B1,p1);

BRCT(B2,p2);

BRCT(B3,p3);

p4 = ~ p1;

p5 = ~ p1∧ ~ p2;

BRCT(B1,p1);

BRCT(B2,p2) if p4;

BRCT(B3,p3) if p5;

The second branch is control-dependent upon the first branch; that is, it executes only if the first
branch falls through. Similarly, the third branch is control-dependent upon both first and second
branches. These operations can be scheduled in an instruction only if branch conditions are
mutually exclusive, i.e., any two of them are not true at the same time. There are some special
cases, such as branches used to simulate an arithmetic-if in Fortran, that automatically satisfy the
requirement. In most cases, however, it is necessary to transform the code to ensure that branch
conditions are mutually exclusive. The second column shows one way to do so. Consider the
second branch in the transformed code. The guarding predicate p4 ensures that the second branch
executes only if the first branch didn't take. In other words, the second branch performs a branch
only if its own branch condition is true and the first branch didn't take. We call such branches
fully resolved branches. Note that compare-to-predicate operations with OR and AND reduction
capabilities (see Section 9.3) provide an efficient means to compute predicates p4 and p5.

In the above example, the effect of conditional execution can also be obtained by modifying the
branch conditions. Consider, for example, the second branch in the transformed code. To get the
same effect, we can modify its branch condition to p2 ∧ p4. This is a general transformation that
can be used to fold the guarding predicate for a branch into the branch condition. However, this
transformation applies only to branch operations that have explicit branch conditions such as
BRCT. It doesn't apply to operations like BRL, which don't have explicit branch conditions but
do have a predicate to guard their execution.

The effect of multiple branch operations in an instruction can also be obtained by using multiple
PBR operations that target the same branch target register. However, this technique may not

55

provide any benefits over the use of multiple operations. The compiler must ensure that the
address visible at the branch point corresponds to the taken branch. One way to do this is to
compute fully resolved branch conditions as described above and use them to guard PBR
operations. Another is to order PBR operations in an appropriate way.

Branch operations in the delay slots of a branch execute in a pipelined fashion, which may lead
to "visits". Consider a branch operation that branches to address A and a branch operation in its
delay slot that branches to address B. Suppose the branch latency is 2, and assume that both
branches take. Then, the execution proceeds as follows.

Cycle Instruction

1

2

3

4

5

First branch;

Second branch;

Instruction at address A;

Instruction at address B;

Instruction at address B+1;

That is, the code at address A executes for some time. Then, the execution starts at the address B,
though there is no explicit branch to the address B in the code starting at A. A compiler is, of
course, free to take advantage of this fact, but it usually results in convoluted code. It may be
better to simply avoid such cases by ensuring that branch conditions for the two branches (one
in the delay slot of another) are mutually exclusive.

The effective use of multiple branches in an instruction and branches in the delay slots of another
branch introduces additional complexities. It is hard to separate code generation from scheduling,
since the decision whether to generate fully resolved conditions or not requires scheduling
information. Two scheduling passes, one before and one after code generation, may help
alleviate the problem.

We conclude this section with some comments about branch operations used in the software
pipelining of loops. We expect that, in most code schemas, a BRF operation will be the only
branch operation in an instruction. Moreover, there will be no branch operations in the delay
slots of a BRF operation. In some cases, it may be necessary to schedule other BRF operations in
the delay slots of a BRF operation. An example is the kernel unrolling to fill the delay slots when
the II (initiation interval) of the loop is smaller than the latency of a BRF operation. A simple
way to handle such cases is to use Nexti (i.e., BRF.F.F.F) in the delay slots. Similar comments
apply to the use of BRW operations. Note that, unlike BRF operations, BRW operations do have
an explicit branch condition, which can be transformed in the way described earlier.

The use of these operations is not limited to code schemas that use predicated execution to
control the execution of pipeline stages. The programmability of source and destination
predicates allows them to be used with or without predicated execution. Table 22 lists the typical
settings of sources and destinations for various schemas.

Similarly, these operations can also be used to experiment with code schema that don't make use
of rotating registers. Note, however, that these operation do modify RRB (rotating register base).
Thus, it may not be possible to use rotating registers in a machine as static registers. Experiments
that simply want to use the rotating registers as static registers can still be performed by creating
a pseudo-machine that has the appropriate number of static registers and no rotating registers.

56

Table 22: Typical settings of source and destination predicates of BRF and BRW operations for various
code schemas

Code schema Destination predicate of BRF or
BRW

First source of BRW

With predicated execution and
rotating registers

PR[0] (i.e., 0th rotating predicate
register relative to RRB)

PR[0]

With predicated execution but no
rotating registers

A static predicate register Same as the destination of the
BRW operation in the previous
iteration

No predicated execution and with
or without rotating registers

Bit bucket, e.g., static PR0 Static PR1, which is permanently
1 when used as an input

12 Concluding remarks
We have described an instruction set architecture which has been designed to support research in
instruction level parallelism. The architecture is intended to support research experiments in
EPIC and superscalar styles of parallelism by providing a baseline for comparison among
independent experiments in instruction level parallelism. The architecture is parametric in the
degree of parallelism to promote a better understanding of the incremental utility of additional
parallelism. A variety of more specialized features are incorporated into the architecture which
may provide substantial benefit when they are used in conjunction with advanced compiler
technology and a suitable implementation of the architecture. The measurement of the utility of
instruction level parallelism and the benefits of these more specialized features is a primary goal
of our research. We will continue to explore the merits of compiler techniques and advanced
architectural features within this framework.

We hope that this architecture supports the needs of a broader research community which may
take active interest in these issues. We invite other researchers who have similar interests to
adopt this architecture in order to provide more commonality in comparing results and in order to
alleviate the replicated work required if we all use an independent approach. It is inevitable that
this architecture will evolve. Its evolution will be engineered to support the investigation of
important research questions in instruction level parallelism as they are identified by our
collaborators and ourselves. We will ensure that the evolution takes place in a controlled manner
and that it is coordinated with our collaborators.

Acknowledgments
We gratefully acknowledge a number of contributions to the body of knowledge presented
within this report.

First, we wish to acknowledge our colleagues at Hewlett-Packard Laboratories, who participated
in the SWS program which led to the development of the PA-WW architecture, the precursor to
the Intel IA-64 architecture. They provided a fertile atmosphere for discussion which helped
shape the HPL-PD architecture. In this climate, it was inevitable that we incorporated some ideas
from our colleagues without providing specific credit.

Second, we gratefully acknowledge the work of those who participated in the design and
definition of the closest historical ancestors to HPL-PD. The HPL-PD architecture inherits
substantial insight from the Cydrome Cydra 5, the HP PA-RISC, and the Multiflow Trace
architectures. We have incorporated these ideas into a cohesive package to define a state-of-the-

57

art research vehicle. We thank the members of the teams which defined these machines for a
body of knowledge which has greatly assisted our work.

Finally, the HPL-PD architecture incorporates ideas from some of the architectures that have
been proposed in the literature, and we gratefully acknowledge those who participated in the
definition of these architectures.

References
1. V. Kathail, M. Schlansker and B. R. Rau. HPL PlayDoh architecture specification: Version

 1.0 HPL-93-80. Hewlett-Packard Laboratories, February 1994.

2. M. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik and S. G. Abraham.
 Achieving High Levels of Instruction-Level Parallelism with Reduced Hardware
 Complexity . HPL Technical Report HPL-96-120. Hewlett-Packard Laboratories, February
1997.

3. M. S. Schlansker and B. R. Rau. EPIC: Explicitly Parallel Instruction Computing. Computer
33, 2 (February 2000), 37-45.

4. M. S. Schlansker and B. R. Rau. EPIC: An Architecture for Instruction-Level Parallel
 Processors . HPL Technical Report HPL-1999-111. Hewlett-Packard Laboratories, February
2000.

5. IA-64 Application Developer's Architecture Guide . (Intel Corporation, 1999).

6. B. R. Rau, D. W. L. Yen, W. Yen and R. A. Towle. The Cydra 5 departmental
supercomputer: design philosophies, decisions and trade-offs. IEEE Computer 22, 1
(January 1989).

7. R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth and P. K. Rodman. A VLIW
architecture for a trace scheduling compiler. IEEE Transactions on Computers C-37, 8
(1988), 967-979.

8. PA-RISC 1.1 Architecture and Instruction Set Reference Manual. (Hewlett-Packard
Company, 1992).

9. H. Schorr. Design principles for a high-performance system. Proc. Symposium on
 Computers and Automata (New York, New York, April 1971), 165-192.

10. H. C. Young and J. R. Goodman. A simulation study of architectural data queues and
prepare-to-branch instruction. Proc. IEEE International Conference on Computer Design:
 VLSI in Computers ICCD '84 (Port Chester, NY, 1984), 544-549.

11. K. Ebcioglu. Some design ideas for sequential natured software, in Parallel Processing
 (Proceedings of IFIP WG 10.3 Working Conference on Parallel Processing) , M. Cosnard
(Editor). (North Holland, 1988), 3-21.

12. K. Ebcioglu and R. Groves. Some global compiler optimization and architectural features
 for improving performance of superscalars RC16145. IBM T.J. Watson Research Center,
Yorktown Heights, NY, 1990.

13. W. Y. Chen. Data Preload for Superscalar and VLIW Processors . Ph.D. Thesis. University
of Illinois, Urbana, IL, 1993.

58

14. S. A. Mahlke, W. Y. Chen, R. A. Bringman, R. E. Hank, W. W. Hwu, B. R. Rau and M. S.
Schlansker. Sentinel scheduling: A model for compiler-controlled speculative execution.
 ACM Transactions on Computer Systems 11, 4 (1993), 376-408.

15. G. M. Silberman and K. Ebcioglu. An architectural framework for supporting heterogenous
instruction-set architectures. IEEE Computer 26, 6 (1993), 39-56.

16. B. R. Rau, V. Kathail and S. Aditya. Machine-description driven compilers for EPIC and
VLIW processors. Design Automation for Embedded System 4 (1999), 71-118.

17. J. C. Gyllenhaal, W.-m. W. Hwu and B. R. Rau. HMDES Version 2.0 Specification .
Technical Report IMPACT-96-3. University of Illinois at Urbana-Champaign, 1996.

18. S. Aditya, V. Kathail and B. R. Rau. Elcor's machine description system: Version 3.0 HPL-
98-128. Hewlett-Packard Laboratories, October 1998.

19. S. Aditya, B. R. Rau and R. C. Johnson. Automatic Design of VLIW and EPIC Instruction
 Formats . HPL Technical Report HPL-1999-94. Hewlett-Packard Laboratories, March 2000.

20. S. Aditya, S. A. Mahlke and B. R. Rau. Retargetable assembly and code minimization
techniques for custom EPIC / VLIW instruction formats. ACM Transactions on Design
 Automation of Electronic Systems (to appear 2000).

21. B. R. Rau. Dynamically scheduled VLIW processors. Proc. 26th Annual International
 Symposium on Microarchitecture (Austin, Texas, December 1993), 80-92.

22. J. C. Dehnert and R. A. Towle. Compiling for the Cydra 5. The Journal of Supercomputing
7, 1/2 (May 1993), 181-228.

23. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank and R. A. Bringman. Effective compiler
support for predicated execution using the hyperblock. Proc. The 25th Annual International
 Symposium on Microarchitecture (Portland, OR, 1992), 45-54.

24. J. C. H. Park and M. S. Schlansker. On predicated execution . Technical Report HPL-91-58.
Hewlett Packard Laboratories, May 1991.

25. S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau and R. Gupta. Predictability of
load/store instruction latencies. Proc. 26th Annual International Symposium on
 Microarchitecture (1993).

26. B. R. Rau, M. S. Schlansker and P. P. Tirumalai. Code generation schemas for modulo
 scheduled DO-loops and WHILE-loops HPL-92-47. Hewlett-Packard Laboratories, April
1992.

27. B. R. Rau, M. S. Schlansker and P. P. Tirumalai. Code generation schemas for modulo
scheduled loops. Proc. 25th Annual International Symposium on Microarchitecture
(Portland, Oregon, December 1992), 158-169.

28. P. Tirumalai, M. Lee and M. S. Schlansker. Parallelization of loops with exits on pipelined
architectures. Proc. Supercomputing '90 (November 1990), 200-212.

29. B. R. Rau. Data flow and dependence analysis for instruction level parallelism, in Fourth
 International Workshop on Languages and Compilers for Parallel Computing , U. Banerjee,
D. Gelernter, A. Nicolau and D. Padua (Editor). (Springer-Verlag, 1992), 236-250.

