Trimaran: A Compiler and Simulator for Research on

Embedded and EPIC Architectures
Version 4.0

support@trimaran.org

April 1, 2007

Contents

1

Introduction

Installation

2.1
2.2
2.3

Software Requirementso
Manual Installation e
LivePC Installation o e e

Trimaran Organization

3.1
3.2
3.3

OpenIMPACT
Elcor o e e
SIMU . . . o e e e
3.3 1 Codegen e
3.3.2 Emulib

Running Trimaran

4.1
4.2

4.3

4.4

Using tcc o o e
OpenIMPACT e
4.2.1 Running OpenIMPACT manually

Automatic Vectorization

s2lc: SUIF to Lcode Conversion

6.1

6.2
6.3

Download and Installation
6.1.1 Imstalling SUIF e
6.1.2 Installing s21c e e
Description of s21c Passes
Using s21c with Trimaran e

11
12
12
13
13
14
14
15

15

7 Mb5elements Cache Simulator

7.1 Imstallation

7.2 Simulating Benchmarks with Mbelements o o oL
8 ARM Port

8.1 Imstallation of the ARM Port

8.2 Running Benchmarks using the ARM Port.

9 Adding a Benchmark

10 Modifying Elcor
10.1 Code Examples e
10.2 Adding Your Own Code e e
10.3 Adding a Command Line Parameter 0 0
10.4 Templates L

11 Adding a New Clustering Algorithm

12 MDES: Machine Description
12.1 HMDES vs. LMDES e
12.2 Macro Registers. e
12.3 Stack Descriptor Section
12.4 Literal Formats L
12.5 Vector Architectures e

13 Adding a new Opcode
13.1 Adding Opcodes to MDES o
13.2 Adding Opcodes to Elcor e
13.3 Adding Opcodes to OpenIMPACT
13.4 Adding Opcode to SImu o o e

14 Customized Instructions

15 Troubleshooting
15.1 Benchmark Debugging Tips« o o e
15.1.1 Simulating Each Source File Individually
15.1.2 Turning Off Elcor Passes e

16 Help! My question wasn’t answered here.

19
20
20

21
21
23

23

25
25
26
27
28

29

29
30
30
30
31
31

31
32
34
35
35

36

38
39
39
39

40

1 Introduction

Trimaran is an integrated compiler and simulation infrastructure for research in computer architecture and
compiler optimizations. Trimaran is highly parameterizable, and can target a wide range of architectures that
embody embedded processors, high-end VLIW processors, and multi-clustered architectures. Trimaran also
facilitates the exploration of the architecture design space, and is well suited for the automatic synthesis of
programmable application specific architectures. It allows for customization of all aspects of an architecture,
including the datapath, control path, instruction set, interconnect, and instruction/data memory subsystems.

The modular nature of the compiler and the hierarchical intermediate program representation used through-
out makes the construction and insertion of new compilation modules into the compiler especially easy.
Trimaran is already populated with a large number of existing compilation modules, providing leverage for
new compiler research as well as education in advanced compiler topics. The Trimaran Graphical User
Interface (GUT) makes the configuration and use of the system surprisingly easy.

Among the rich suite of compiler analysis and optimizations are:

e Advanced region formation algorithms (e.g., superblocks and hyperblocks) to expose instruction level
parallelism with speculation and predication,

e Various backend instruction partitioning and mapping algorithms for automatically distributing par-
allelism in a multi-clustered architecture,

e A first of its kind back-end vectorizer that extracts and exploits data level parallelism using short
vector instructions (SIMD),

e Various register allocation heuristics,

e Instruction scheduling algorithms including software pipelining with modulo scheduling.

Although there are several compiler infrastructures available to the research community, Trimaran is unique
in that it is especially geared toward compiler and architecture research. Trimaran is used for designing,
implementing, and testing new optimizations, as well as the evaluation of various architectural innovations.
Trimaran is also widely used for teaching and education purposes at several universities worldwide.

1.1 What is new in this version?

We are committed to releasing a robust, tested, and documented system. Our website (http://www.trimaran.org)
provides the latest information on Trimaran, and includes links to download the system, as well as docu-
mentation and other useful resources.

The following is a summary of the newest Trimaran features made available in the current release.

e Support for multi-cluster architectures. The clusters can be organized as either sharing an inter-cluster
communication bus or a mesh point-to-point operand network.

e Support for application-specific instruction-set extensions.

e Support for automatic vectorization.

e Support for Fortran applications via a SUIF to Trimaran translator.

e Advanced simulation of the memory system using the M5 simulator.

e Code generation infrastructure to handle ISAs with arbitrary literal bit-width constraints.
e Code generation for the ARM ISA.

e New datatype attribute associated with every operand to describe the data type (integer/float/predicate),
whether the operand is signed or unsigned, and the operand bit-width.

e Support for the long long datatype

e Modulo variable expansion to support modulo scheduling without rotating registers or other hardware
support.

e Significantly improved code quality. Register allocation has been completely rewritten and many
optimizations have been added to the default path.

e Lots of bug fixes

1.2 Supported Instruction Sets (ISAs)

Trimaran generates and evaluates code for two instruction set architectures (ISAs). The primary/native ISA
is HPL-PD, but the ARM ISA is also supported. A brief description of each ISA follows.

e HPL-PD [4] is a parametric VLIW architecture. It admits processors of different composition and
scale, especially with respect to the amount of parallelism offered. The HPL-PD parameter space
includes the number of clusters in a multi-cluster processor, the make up of each cluster (e.g., types
of functional units, the composition of the register files), and the instruction set including operation
latencies and descriptors that specify when operands may be read and written, instruction formats,
and resource usage behavior of each operation. The architecture instruction set is akin to a RISC
load-store architecture, with standard arithmetic and memory operations. It also supports speculative
and predicated execution, compiler exposed memory systems, a decoupled branch mechanism, software
pipelining, and most recently, short vector instructions.

e ARM is a architecture that is widely popular in embedded systems. The instruction set is also similar
to a RISC load-store architecture. It supports conditional execution of most instructions. More
information on the ARM instruction set can be found in [9].

2 Installation

There are two methods of installing Trimaran:

e Manual installation: This allows you more control over the installation process, and can be useful
if the automated installation does not work on your system. Make sure you have the requirements
described in Section 2.1, then see Section 2.2.

e LivePC installation: For Windows users. This is a virtual applicance/virtual machine-based version
of Trimaran that allows you to easily get Trimaran up and running without installing. See Section 2.3.

2.1 Software Requirements

This Trimaran release has been extensively tested using Fedora Core 3, 4 and 5 on x86 Linux, as well as

Redhat Enterprise Linux 4 running on x86-64. Users working with other operating systems may experience

some obstacles in the installation process’.

Trimaran requires the following software packages:

e gcc (tested extensively with version 4.0.1, but 3.2 and 3.4.4 should also work)
e autoconf version 2.54 (may require this exact version)

e automake version 1.7 (may require this exact version)

The optional Trimaran GUI requires the following additional packages:

e TCL 8.0 or later (binary named tclsh)

e Tk 8.0 or later (binary named wish)

Please note that in order to install the Trimaran compiler on a 64-bit system, the 32-bit development libraries
must be installed (e.g. glibc-devel-X.i386.rpm and libstdc++-devel-Y.i386.rpm? where X and Y are version
numbers corresponding to the x86_64 versions of these libraries).

2.2 Manual Installation

1. Make sure your system has the software requirements described in Section 2.1.
2. Fetch the Trimaran release sources from http://trimaran.org/download.shtml

3. Unpack the sources:

tar xzf trimaran_4_0.tar.gz
cd trimaran

4. Setup your environment: Several environment variables are required to build or use the Trimaran
toolchain. We will refer to the directory housing Trimaran as <TRDIR>. The files envrc and envrc.bash
located in <TRDIR>/trimaran/scripts/ provide a convenient way of loading the variables into your
shell environment via the shell source command. First modify the file envrc[.bash] to replace
TRIMARAN ROOT with the path to your Trimaran installation (e.g., <TRDIR>/trimaran), then if you are
using csh or tcsh:

% source <TRDIR>/trimaran/scripts/envrc

1For example, Ubuntu systems link ’sh’ to the ’dash’ shell which has strict POSIX compatability. Some trimaran components
require non-POSIX extensions that existed in ’sh’, so it’s necessary to either change the link, or change the offending scripts to
use ’bash’ instead.

2Note that in some Fedora releases, using yum to install libstdc4+-devel.i386 will uninstall libstdc4+-devel.x86_64. Since
this is probably undesirable, one should manually download libstdc++-devel.Y.i386.rpm and install using the rpm -i command.

or if you are using bash:
% source <TRDIR>/trimaran/scripts/envrc.bash

It might be helpful to add one of these commands to your shell startup script (e.g., . cshrc or .bashrc).

5. Build and install:

% cd openimpact; ./install_openimpact
% cd ../elcor; make
% cd ../simu; make

6. Install optional packages:

% wget http://www.graphviz.org/pub/graphviz/ARCHIVE/graphviz-2.8.tar.gz
% tar xzf graphviz-2.8.tar.gz
% cd ../graphviz-2.8/; ./configure; make; make install

2.3 LivePC Installation

The easiest way to use Trimaran is the Trimaran LivePC, a virtual appliance that we maintain and distribute
to ease the process of installing or upgrading Trimaran. The Trimaran LivePC is based on a lightweight
Linux operating system and contains everything needed to run Trimaran. It is precompiled and ready to
use. It is also the most convenient way for Windows users to install Trimaran. The LivePC is currently not
available for Linux users.

The Trimaran LivePC requires Windows XP SP2 and the LivePC engine from http://www.mokab. com.
Installation instructions for the engine are available at:

http://wuw.mokab.com/products/getstarted.html
Once the engine is installed, download the Trimaran LivePC from:

http://www.trimaran.org/livepc

3 Trimaran Organization

Trimaran is comprised of three components: the OpenIMPACT compiler, the Elcor compiler, and the Simu
simulator (shown in Figure 1). Trimaran uses OpenIMPACT to compile the original source code into an
assembly intermediate representation (IR) called Lcode. The Leode produced is optimized for ILP, but not
for a specific machine. This code is then passed to the Elcor compiler, along with a machine description
(MDES) that specifies the target machine. Elcor compiles the code for the target machine, producing another
IR called REBEL. The Trimaran simulator known as Simu consumes the REBEL code, executes the code, and
gathers execution statistics.

Trimaran System Organization

OpenIMPACT Compiler
« C Parsing

I Function Inlining Leode
Source « Classical Optimization IR
« Code Layout

* Hyper/Superblock Formation

]

Elcor Compiler Simu Simulator

o Cluster Assignment * Generation of Execution Statistics

* Acyclic/Modulo Scheduling Rebel e M5 Cache Simulation
) ebel R

« Code Generation IR

* Register Allocation

« Vectorization

Machine
Description
(MDES)

Figure 1: Overview of compilation steps in Trimaran.

3.1 OpenlIMPACT

The OpenIMPACT compiler is maintained by the IMPACT group (http://www.crhc.uiuc.edu/Impact/)
at the University of Illinois. Within Trimaran, a slightly modified version of OpenIMPACT is used to
compile the original C source into assembly code. The main passes of OpenIMPACT are detailed below, and
illustrated in Figure 2.

e EDG front end: The original C source is parsed by a front end licensed from the Edison Design
Group (EDG). It is converted to an abstract syntax tree representation called Pcode.

e Pcode transformation and analysis: Passes such as flattening and function inlining perform oper-
ations on the syntax tree. Optionally, interprocedural analysis (IPA) analyzes the objects pointed to
by memory operations (pointer analysis), and annotates the Pcode with this information.

e PtoL lowering: The abstract syntax tree (Pcode) is converted to a machine-independent assembly
IR called Lcode.

e Classic optimizations: The Lopti pass performs classic optimizations.
e Lcode profiling: The assembly code is simulated to obtain profiling information.

e ILP optimizations: Several passes may perform loop unrolling, superblock formation, and hyperblock
formation on the Lcode.

e Memory profiling: After optimizations, the Lcode is simulated again, this time to obtain profile
information about memory conflicts and cache behavior.

e Trimaran bridge: The Lhpl_pd pass performs code generation specific to the HPL-PD architecture
(see Section 1.2) used by Trimaran.

OpenIMPACT Compiler

EDG Front End

Pcode Transformations

« Flattening
e Profiling
« Inlining

 Interprocedural Analysis (IPA)

1

Elcor Compiler

Lcode (O_tr, S_tr, HS_tr)

IR Reader

Pcode (pcf, pcf_p, pci, stp, stp_w)

Classic Optimizations

Lcode Transformations

{

o Profiling
 Loop Unrolling
« Hyperblock/Superblock Formation

1

Lcode (O_p, S, X, H, HS)

| Memory Profiling (optional) |

i

Lcode (O_p.an, S.an, HS.an)

Trimaran Bridge

Lcode (O_tr, S_tr, HS_tr)

Process Function
Classic Optis
Initial Codegen

Custom Op
Generation

Clustering

Modulo Scheduler

Scalar Scheduler

Prepass Codegen
Register Allocation

Postpass
Clustering

Postpass
Scheduling

Postpass Codegen

IR Writer

REBEL (el)
|:| Function-level

|:| Region (BB/HB/SB)-level

Figure 2:

Compilation steps in OpenIMPACT and Elcor. File extensions shown in () where appropriate.

3.2 Elcor

The Elcor compiler is a VLIW compiler that takes largely machine-independent assembly code and com-
piles/optimizes it for a specific machine described in a given machine description (MDES). The input as-
sembly code is usually generated by OpenIMPACT in Lcode format, and output in the Elcor native REBEL
format; however, Elcor is capable of reading or writing either format.

Elcor processes one function at a time (note that OpenIMPACT may have inlined some functions into others).
Each function undergoes the following steps:

e Classic optimizations: Classic optimizations such as common subexpression elimination, constant
propagation, dead code elimination, and others are performed.

e Initial code generation: This converts operands to a suitable format for the target architecture.

e Custom operation generation: This optional step finds subgraphs within the dataflow graph that
are suitable for conversion to custom operations that accelerate execution, as detailed in Section 14.

e Vectorization: This optional step identifies and exploits data-level parallelism for efficient execution
on architectures with SIMD extensions, as detailed in Section 5.

e Instruction clustering: For multi-clustered architectures, instructions are partitioned among the
clusters, and move operations are orchestrated to transport operands between clusters.

e Prepass scheduling: The code is scheduled region-by-region using the scalar scheduler or the modulo
scheduler. The modulo scheduler is used to software pipeline loops. It also performs rotating register
allocation.

e Prepass code generation: Code generation binds the operations on the clusters to their respective
register files.

e Register allocation: Physical registers are allocated for scalar operands, and spill code is generated.
e Postpass clustering: Newly inserted register spill code is assigned to clusters.
e Postpass scheduling: Scheduling binds newly added spill code to resources.

e Postpass code generation: A final pass of code generation is performed to appropriately bind
register spill code to register files.

e IR writer: This outputs the code, usually in REBEL format.

3.3 Simu

The Trimaran simulator (Simu) supports the HPL-PD parametric architecture. (See Section 1.2 for a
description of HPL-PD.) It takes REBEL assembly code as input, and creates a C program that runs on the
native machine, and emulates how the program would execute on the HPL-PD architecture. The simulator
generates multiple statistics to summarize the program execution.

The simulator has a static component and a dynamic component. The static component is called Codegen,
and the dynamic part is Emulib. The first generates a low-level C file similar to an assembly file from the
REBEL IR. The file is then compiled using the host native C compiler and linked to the emulation library
(Emulib) to simulate the application. This is illustrated in Figure 3. C is used as the Codegen output to
provide platform independence so that the simulation can run on any platform, without modification.

SIMU

Codegen

MSelements

(optional cache :' 1
simulator) p !

Native C Code
Emulib

(contains a function
for each op)

(calls functions to
emulate each op)

Native Compiler
+ Linker f-——————-"
(e.g. gcc)

l

Simulation Binary

Native Machine

Program Output
(for validation)

Execution Statistics

Figure 3: Flowchart for the simulator.

3.3.1 Codegen

For each input REBEL file, Codegen creates four output files:

1. A file with a . c extension. This file contains a series of stub routines to inter-operate with native code.
There is one stub per original procedure appearing in the original source code file.

2. A file with a . inc extension. This file contains external variable declarations, global data, and structure
and union layouts that mirror the original C source. This information is required for inter-operation
with native code. In addition there are data required by the runtime emulation library (Emulib) for
tracking execution statistics and profiling information.

3. A file with a .tbls extension. This file is a collection of emulation tables. One emulation table is
maintained per procedure of the original source file. Each emulation table lists a sequence of instructions
and their operands.

4. A file named benchmark.data_init.simu.c. This file initializes the program’s global data structures.

3.3.2 Emulib

The emulation library provides an interpreter and a set of emulation routines for the HPL-PD virtual
machine. The library supports speculation, predication, software pipelining with modulo scheduling and

10

rotating registers, clustered HPL-PD architectures, short vector instruction register files, and scalar register
files.

The interpreter is invoked on every procedure entry. It emulates the instruction stream in a loop until the
procedure returns. There is one emulation function for every HPL-PD operation. These emulation func-
tions are automatically generated from the operation specification. The specification of HPL-PD operations
consists of its I/O format and its actions.

The emulation library provides a rich facility for tracing execution. There are built-in plugins to record
the dynamic control flow of an application, or the address trace. The plugins are user programmable and
allow users to selectively enable and disable the tracing functionality at the level of functions, regions, or
operations.

The emulation tracks a multitude of statistics to summarize the program execution. It also provides an
interface for simulating the memory hierarchy. The optional M5elements simulator described in Section 7
allows cycle-accurate modeling of the memory system.

4 Running Trimaran

The Trimaran C Compiler script (tcc) is the easiest way to use Trimaran. We show how to run Trimaran
for an example benchmark called fir_int (an integer version of a Finite Impulse Response filter). The
following commands compile and simulate fir_int using the default settings:

% cd /tmp
% tcc -bench fir_int

A directory /tmp/fir_int_0 is created, and will contain intermediate files corresponding to the compilation
and simulation of the benchmark fir_int. These files are useful for scrutinizing the compiler output,
debugging, and performance analysis. If the compilation and simulation complete successfully, tcc will print
the following at the end of its output stream:

tcc: Result Check *SUCCESSFUL* for Benchmark fir_int on
input inputl, region type 0.

The file /tmp/fir_int_0/elcor_intermediate/ELCOR_STATS will summarize a few key statistics about the
benchmark. The statistics can be totaled for the entire benchmark using the Sumstat utility provided with
Elcor:

% Sumstat -total -i ELCOR_STATS

These statistics, which include performance estimations, are based on profiling information.
Actual simulation results are recorded in /tmp/fir_int_0/simu_intermediate/PD_STATS. The statistics

are aggregated for each function, and then totaled for the entire program. The simulator tracks a number
of statistics including:

11

e total cycles: the total simulated execution time of the benchmark in cycles.

e compute_cycles: the total number of computation cycles assuming all branches are perfectly predicted,
and all memory operations (e.g., loads and stores) latencies are less than or equal to the MDES specified
latencies.

e stall cycles: the number of processor stall cycles due to branch mis-predictions and memory system
delays.

4.1 Using tcc

The main driver script tcc (located in $TRIMARAN ROOT/scripts) will execute the entire Trimaran toolchain.
The tcc script looks for benchmarks in the $TRIMARAN_ROOT/benchmarks directory. The command “tcc
-bench epic -region h” would compile and run the benchmark epic using hyperblocks. A workspace
directory with the benchmark name appended with a _HS, _S, or _0, is created depending on the type of
region formation that is used during compilation (hyperblock, superblock, or basic block, respectively). The
intermediate files generated by OpenIMPACT, Elcor, and Simu are stored in their respective subdirectories
within the workspace directory. These files can be later used to run the individual tools separately without
having to invoke all of Trimaran.

Running “tcc -help” lists the available options. Commonly used options are described below.

-bench: specify benchmark to compile.

-region: specify regions impact is allowed to form, can be b|s|h|all.

-s{ilels|r}: specify extent of compilation (compile through OpenIMPACT, Elcor, Simu Codegen, run).
-M: specify MDES (machine description) file used by Elcor.

-E: parameters passed directly to Elcor, e.g., tcc -E"-Fdo_modulo_scheduling=no".

-S: parameters passed directly to Simu, e.g., tcc -S"-Femulate unscheduled=yes".

4.2 OpenIMPACT

The top level script for OpenIMPACT is compile bench, located in $IMPACT ROOT/scripts. Running the
script without any parameters will list available options. Additional parameters to OpenIMPACT are found
in $IMPACT ROOT/parms. Default parameter settings are found in the * DEFAULTS files. These values can
be overwritten by STD_PARMS . IMPACT, which can be subsequently overwritten by arguments passed from the
command line. Commonly used options include:

e opti_level: degree of optimization from 1 to 4.

do_loop_unroll: permit loop unrolling.
e max_unroll_allowed: amount of unrolling allowed.

e regroup_only: prevent inlining.

12

e max_expansion ratio: amount code expansion due to inlining allowed.

4.2.1 Running OpenIMPACT manually

We now show how to run OpenIMPACT manually using the same example benchmark from the beginning
of Section 4, fir_int. When we ran tcc, it created the fir_int_0/impact_intermediate directory. We
can use this directory, or put the OpenIMPACT files anywhere. (You don’t need to run tcc first.) To run
OpenIMPACT manually, try:

% mkdir -p /tmp/fir_int_0/impact_intermediate # optional
% cd /tmp/fir_int_0/impact_intermediate # optional
% compile_bench fir_int -c20_tr -p $TRIMARAN_ROOT/openimpact/parms/STD_PARMS.IMPACT -project full

In the compile_bench command above, -c20_tr tells OpenIMPACT to compile from C source code to the
Trimaran bridge Lcode files, with file extension .0_tr. One of these .0_tr files is created for each original C
source file. The final output from OpenIMPACT, which will be the input to Elcor, is a gzipped tar archive
of the Trimaran bridge Lcode files (fir_int.0_tr.tgz).

You may notice that additional gzipped tar archives (.tgz) are created; these show the benchmark interme-
diate representation after various steps in OpenIMPACT compilation. Figure 2 helps explain the meaning
of the file extensions.

4.3 Elcor

The top level script for Elcor is gen_elcor.pl (located in $ELCOR_HOME/bin). Since there often are multiple
files in a benchmark, gen_elcor.pl calls the elcor binary for each file. Parameters read by Elcor are found
in $ELCOR_HOME/parms. The ELCOR_PARMS_FILE environment variable, $ELCOR_HOME/parms/ELCOR_PARMS by
default, specifies the list of parameter files used by Elcor. The default values can be overwritten by arguments
passed through the command line. The file DRIVER_DEFAULTS contains the main switches affecting Elcor
compilation (analysis, optimizations, etc.). Options found in DEBUG_DEFAULTS turn debug output on/off and
control the level of detail. Commonly used options include:

e do_classic_opti: perform classical optimizations e.g., common subexpression elimination.

e do_{prepass|postpass}.scalar_scheduling: perform prepass/postpass scheduling on hyperblocks,
superblocks, and basic blocks.

e domodulo_scheduling: perform modulo scheduling.

e do_scalar regalloc: perform scalar register allocation.

e memvr_profiled: perform memory dependence profiling.

e {input|output} format: specify input/output file types (rebel, lcode).

e lmdes_file name: machine description (MDES) file. Same as “-M” when using tcc.

13

4.3.1 Running Elcor manually

We now describe how to run Elcor manually using the same example benchmark from the beginning of
Section 4, fir_int. To run Elcor, we need the output from OpenIMPACT, an archive of Trimaran bridge
Lcode files (fir_int.0_tr.tgz). If we ran OpenIMPACT automatically through tcc, this file can be found
in fir_int_0/impact_intermediate.

Once we have the archive, we uncompress it to get a .0_tr file for each original file in the benchmark. For
fir_int, we have two files:

fir_int.0O_tr
main.O_tr

We can now run Elcor on each of these files separately:

% elcor -i fir_int.O_tr -o fir_int.0O_el
% elcor -i main.0_tr -o main.0_el

The -i parameter specifies an input file, and -o specifies an output filename. To pass extra parameters to
Elcor, we prepend the parameter setting with -F. For example, if we wanted to turn off postpass scheduling,
we would run:

% elcor -i fir_int.O_tr -o fir_int.0O_el -Fdo_postpass_scalar_scheduling=no
% elcor -i main.O_tr -o main.0_el -Fdo_postpass_scalar_scheduling=no

Note that if we are using superblocks, 0_{trlel} becomes S_{trl|el}, or if we are using hyperblocks, it
becomes HS_{tr|el}.

4.4 Simu

The two main scripts for the simulator are found in $SIMU_HOME/bin: genEtoC.pl runs Codegen on REBEL
IR generated by Elcor and produces C files that are compiled with genCto0.pl into object files. Commonly
used options include:

e emulate unscheduled: ignore VLIW scheduling and execute code sequentially.

e emulate virtual regs: ignore register allocation and simulate virtual, instead of physical, registers.
e interlocking: enable pipeline interlocking.

e do_memory_simulation: enable simulation of the memory hierarchy.

e control_flow_trace: trace the dynamic control flow of execution.

e address_trace: emit a trace of load and store addresses during execution.

e generate_assembly: emit mock assembly code for the input file; used primarily for debugging.

14

4.4.1 Running Simu manually

The simulator can also be run manually; we continue using the example benchmark from the beginning of
Section 4, fir_int. We will need the output of Elcor, which is an archive of REBEL files, fir_int.0_el.tgz.
It may help to refer to Figure 3 during this process. Follow these steps to run Simu manually:

1. Uncompress the archive of REBEL files:
% tar xzf fir_int.0_el.tgz
2. Run Codegen to generate C files for each REBEL file:
% 1ls x.0_el | gen_EtoC.pl 1 .
3. Compile the C files we just generated into object files:
% ls *.0_el | gen_CtoO.pl 1 .
4. Link the object files with Emulib, creating a simulation binary. Here we call our binary fir_int_0:
% gcc —o fir_int_0 *.0_el.simu.o benchmark_data_init.simu.o -L$SIMU_HOME/1lib -lequals -1m

5. Finally, run the binary as if it were natively compiled, using whichever command line parameters you
desire:

% ./fir_int_0

5 Automatic Vectorization

Among the new optimizations offered in Trimaran is a back-end vectorizer that can identify and exploit
data level parallelism for efficient execution on architectures with SIMD (single-instruction multiple-data)
support. The technique implemented in Trimaran is called selective vectorization [6]. It creates highly
efficient instruction schedules by distributing computation between scalar and vector functional units to
improve resource utilization. For processor models that contain an abundance of scalar and vector processing
units, selective vectorization creates loops with a balance of both vector and scalar instructions. Since vector
and scalar occupy the same loop body, scalar operations are unrolled by a factor of the vector length. As such,
the technique is most applicable to the short-vector instruction sets commonly found in today’s multimedia
extensions.

The Elcor parameter do_vectorize in $ELCOR_HOME/DRIVER DEFAULTS enables the vectorization of loops
during compilation. The vectorizer is most effective, and in many cases only applicable, when it has precise
memory dependence information. For this reason, we recommend extracting dependence information using
the SUIF front-end as described in Section 6. Selective vectorization is highly coupled with software pipelining
and is intended for use in conjunction with the Trimaran modulo scheduler.

The options below, which are found in $ELCOR_HOME/VECTORIZER DEFAULTS along with some others, provide
some control in applying the vectorizer:

15

e vectorizemodel: The vectorizer will apply different techniques and heuristics according to the model
selected. There are four current models implemented. They are:
— Unroll the loop by a factor of vector length.
— Vectorize all vectorizable operations.

— Perform full vectorization or no vectorization. Select the option with the highest predicted per-
formance after modulo scheduling.

— Perform selective vectorization.
e ignore comm: Assume hardware support for communicating operands between vector and scalar in-

structions. If this option is false, the vectorizer will communicate operands between scalar and vector
operations through memory using load and store instructions.

e vectorize fp_only: Only vectorize floating point operations.

The vector length, as well as descriptions of the vector operations are specified in the machine description
(MDES) file (Section 12).

6 s2lc: SUIF to Lcode Conversion

s21c is a set of SUIF [10] passes that convert SUIF1 IR to OpenIMPACT Lcode. This functionality is
particularly useful if you want to target Fortran sources in Trimaran, or if you want to leverage SUIF’s
extensive library of optimizations. In particular, the SUIF dependence library is necessary for automatic
vectorization, described in Section 5.

6.1 Download and Installation

s21c requires SUIF version 1.3.0.5. It is available from http://suif.stanford.edu/suif/suifi. However,
we encountered difficulties compiling this distribution on newer systems. Hence, we recommend our own
modified version of the SUIF package available from: http://www.trimaran.org/download.shtml.

We made minimal changes to the SUIF sources and build system to compile on RedHat Fedora Core 5
and 6 using gcc versions 3.2.3, 3.4.6, and 4.0.3. One caveat is that newer Linux systems support stdargs

exclusively, while SUIF only supports varargs. As such, SUIF will not parse many standard header files on
newer systems.

6.1.1 Installing SUIF

Download and unpack the SUIF distribution in your desired directory which we will refer to as <SUIFDIR>.
The following will create a directory <SUIFDIR>/suifhome to house SUIF.

% cd <SUIFDIR>
% tar xzf suif-1.3.0.5-trimaran.tar.gz

16

Directions to install SUIF are in <SUIFDIR>/suifhome/src/basesuif/README.basesuif, although the fol-
lowing recipe was tested on a few different platforms and verified to work:

1. Set the SUIFHOME environment variable to point to <SUIFDIR>/suifhome.

2. Setup the necessary SUIF environment variables using the follwing in csh or tcsh
% eval ‘$SUIFHOME/setup_suif‘
or the following equivalent in a bash shell
% eval ‘$SUIFHOME/setup_suif -sh®

The command also has the effect of adding the SUIF scripts and bin directories to your path.
3. Build and install.

% cd $SUIFHOME
% make setup
% make install

6.1.2 Installing s2lc

To install s21c, make sure your Trimaran environment variables are properly set (see Section 4), and ensure
that $SUIFHOME points to your SUIF installation path. Then, fetch, unpack and install s21c as follows:

% cd $TRIMARAN_ROOT
% tar xzf s2lc.tar.gz
% cd s2lc/src

% make install

The s21c binaries are installed in $TRIMARAN ROOT/s21c/bin. For additional information, refer to the
README files in the SUIF and s21c directories.

6.2 Description of s21c Passes

Converting a C or Fortran program to Lcode is accomplished through a series of SUIF passes with optional
optimization passes in between. The s21c package contains a sample Makefile showing the preferred order
of the passes. At the very least you must perform the following:

e Parse the source code with scc, the SUIF front-end,
e Lower the IR with SUIF’s porky pass,
e Convert to three-operand form with flatten, and

e Convert to Lcode with s21c.

17

Most users will also perform several optimization passes along the way. In addition to the core Lcode-
conversion functionality, the s21c package contains several optional compiler passes. The passes provided
with s21c are as follows:

e attach_loop_deps (optional): Utilizes the SUIF dependence library to identify inner loop dependences
(loop-independent and loop-carried), and attaches the relevant information as annotations on memory
instructions.

e save_base_syms (optional): Attaches base address symbols to loads and stores of arrays. This allows
later passes to disambiguate memory accesses to different arrays.

e indvar_opt (optional): Induction variable identification and address strength reduction.
e no_memcpys (usually required): Replaces SUIF memcpy instructions with load/store pairs.

e pre (optional): Partial Redundancy Elimination using the Lazy Code Motion algorithm by Knoop,
Ruthing, and Steffen [5].

e flatten: Converts SUIF IR to three-operand form suitable for s21c.

e s2lc: Converts SUIF to Lcode.

6.3 Using s21c with Trimaran

We recommend you add the following to your $TRIMARAN ROOT/scripts/envrc[.bash]. For csh and tcsh:

setenv SUIFHOME <SUIFDIR>/suifhome
eval ‘$SUIFHOME/setup_suif‘
set path=($path $TRIMARAN_ROOT/s21lc/bin)

or similarly for bash:

export SUIFHOME=<SUIFDIR>/suifhome
eval ‘$SUIFHOME/setup_suif -sh®
export PATH=$PATH:$TRIMARAN_ROOT/s21lc/bin

Then use the shell source command to properly configure the environment.

For a given input file <FILE.c>, the following minimal set of passes generate Lcode that may be further
optimized with OpenIMPACT (see Figure 2) or translated directly for input to Elcor.

% scc -.spd FILE.c

% porky -Dfcmmas -Darrays -Dmbrs -Darrays -Dblocks -Dfors -Dloops -Difs FILE.spd FILE.low
% no_memcpys FILE.low FILE.nmc

% flatten FILE.nmc FILE.flt

% s2lc FILE.flt FILE.lc

S

S

18

The same command sequence will work for Fortran source code. If more optimization is desired, a more
extensive set of passes might consist of the following:

% scc —.spd FILE.c

% porky -Dblocks FILE.spd FILE.blk

% no_memcpys FILE.blk FILE.nmc

% save_base_syms FILE.nmc FILE.sav

% attach_loop_deps FILE.sav FILE.dep

% porky -Darrays FILE.dep FILE.arr

% indvar_opt FILE.arr FILE.ind

% porky -Dfcmmas -Dmbrs -Darrays -Dfors -Dloops -Difs FILE.ind FILE.low
% porky -fold -const-prop -copy-prop -ucf-opt -iterate FILE.low FILE.opt
% pre FILE.opt FILE.pre

% porky -dead-code FILE.pre FILE.dce

% porky -unused-syms -unused-types FILE.dce FILE.unu

% flatten FILE.unu FILE.flt

% s2lc FILE.flt FILE.lc

S

The passes above include induction variable optimization, constant folding, constant propagation, copy
propagation, partial redundancy elimiation, and dead-code elimination. In addtion, save_base_syms and
attach loop_deps extract memory dependence information that is passed to the Trimaran Elcor compiler.
They are necessary if you wish to perform vectorization.

The following will convert the output Lcode to an Elcor compatible format:
% Lhpl_pd -Farch=HPL-PD -Fmodel=V1.1-HP -Fphase=1 -i FILE.lc -o FILE.O_tr

which can then be vectorized in Elcor by enabling the do_vectorize flag either in the Elcor parameter file
or via a command line option as shown below:

% elcor -i FILE.O_tr -o FILE.el -Fdo_vectorize=yes

An example Makefile is available in $TRIMARAN ROOT/s21c/Makefile.sample for your convenience. Refer
to Section 5 to perform automatic vectorization in Elcor.

7 Mbelements Cache Simulator

Mb5elements is a cache simulator that can be optionally used with the Trimaran simulator. It allows Simu
to use the memory subsystem of a larger simulator called M53.

M5 is a full-system simulator for architecture research. It provides capabilities to simulate a variety of CPU
models and memory hierarchies. It features a detailed, event-driven memory system including non-blocking
coherent caches and split-transaction buses. A variety of cache configurations and coherence protocols can
be modeled. Full details on M5 are available at http://www.mbsim.org/.

3The name M>5elements follows the trend by several popular commercial products that released less feature-rich versions and
appended ”elements” to the name.

19

7.1 Installation
Mb5elements requires the following software packages:

e Python (check http://www.python.org/ for the latest version)

e SCons (check http://www.scons.org/ for the latest version)

To install M5elements, ensure that the Trimaran environment variables are set according to the instructions
in Section 4. Then enter the Mbelements directory and run make. This step requires an active network
connection because it downloads the relevant M5 sources, applies the Mbelements patch, and compiles it.

% cd $TRIMARAN_ROOT/m5
% make

Next, enter the Simu Emulib directory
% cd $SIMU_HOME/src/emulib

and open the Makefile for editing. Change the value of BUILD_M5E from O to 1 so that it is
BUILD_M5E=1

then rebuild the emulation library
% make

At this point the M5elements library is compiled and Simu is properly configured to use it for cache simula-
tion. To disable M5elements at any point, simply toggle BUILD_M5E (set to 0) in the Emulib Makefile and
rerun make to recompile the library.

7.2 Simulating Benchmarks with Mb5elements

Once Mbelements has been installed, just run tcc as you would normally. The Mb5elements library will be
linked in automatically.

When the benchmark is simulated, Mb5elements generates additional statistics to summarize the memory
hierarchy performance. The statistics appear in mbstats.txt which is located in the simu_intermediate
directory created for the benchmark.

To configure the memory system used by Mbelements, edit the file referred to by the $M5_CONFIG_FILE
environment variable. You can also change the value of this variable to use a configuration file from another
location. The environment variable is read when the benchmark is simulated by Simu. For an explanation
of the syntax in this file, please see the M5 website: http://www.mbsim.org/.

20

8 ARM Port

In addition to the traditional HPL-PD output, this version of Trimaran has also been ported to the ARM ISA.
In this path, Trimaran produces GNU compatible assembly files that can be assembled/linked using a cross-
compiled gcc, and then run using a simulator. Development was primarily done targeting SimpleScalar.
Quite a bit of effort was spent optimizing this port, and on average it performs within 7% of “gcc -03
-fomit-frame-pointer”*. At present, the only known limitation of this port is that the long long datatype
is not supported.

There are several differences between the main Trimaran path and the ARM port. First, many of the ILP
optimizations in OpenIMPACT are either turned off or toned down. ARM only has 15 architecturally visible
registers, and ILP optimizations tend to cause a lot of spill code. Secondly, many phases of Elcor are turned
off. For example, the machine model expected by the modulo scheduler does not match what the ARM
architecture provides, so it is disabled. Lastly, instead of using Codegen to translate from REBEL to C, this
path uses arm-trans to convert from REBEL to ARM assembly. These files are then compiled and run on a
separate simulator.

Below we describe how to set up and run benchmarks using the ARM port. We assume that you are using
gcc as a cross compiler and SimpleScalar to simulate, though this should be easy to change if desired.

8.1 Installation of the ARM Port

Ensure that your environment is properly set (see Section 4), and that Elcor is already compiled since
arm-trans requires libraries from Elcor. The first step is to build the REBEL to ARM translator

% cd $TRIMARAN_ROOT/arm
% make

The second step requires the creation of a cross compiler. We’re using an old version of gcc because it
supports a deprecated floating point standard that is used in SimpleScalar (and consequently by Trimaran).
Using a more up to date verion of gcc would require upgrading the floating point support in both SimpleScalar
and the ARM port.

The following instructions for building a cross-compiler are provided courtesy of the SimpleScalar support
team.

1. Make a directory to house the cross compilers and go to that directory. We will refer to the directory
as <CROSSDIR>.

% mkdir <CROSSDIR>
% cd <CROSSDIR>

2. Download and unpack the compiler and libraries.

% wget http://cccp.eecs.umich.edu/trimaran/binutils-2.10.tar.gz
% wget http://cccp.eecs.umich.edu/trimaran/gcc-2.95.2.tar.gz

4We know where the inefficiencies are, but most of the low hanging fruit is gone.

21

10.

% wget http://cccp.eecs.umich.edu/trimaran/glibc-2.1.3-armlinux.tar.gz

% tar xzf binutils-2.10.tar.gz
% tar xzf gcc-2.95.2.tar.gz
% tar xzf glibc-2.1.3-armlinux.tar.gz

. Build binutils.

% cd binutils-2.10

% ./configure --target=arm-linux --prefix=<CROSSDIR>
% make

% make install

%hocd ..

Add <CROSSDIR>/bin to your executable path. If you are using csh or tcsh type rehash at the
command line to rescan the directories in the path for new executables. You do not need to do this if
you are using bash since it is done automatically.

Build GNU gce.

% cd ./gcc-2.95.2

% ./configure --target=arm-linux --prefix=<CROSSDIR>
% make LANGUAGES=c

% make LANGUAGES=c install

%hocd ..

Edit ./1ib/gcc-1lib/arm-1inux/2.95.2/specs as follows: replace all occurrences of “elf32arm” with
“armelf_linux”. This fixes an incompatibility between gcc and GLIBC libraries.

Finally, do a rehash again so that the shell finds the new executables. You can cross compile a binary
that can be run on SimpleScalar/ARM using arm-linux-gcc -o <binary> <sources...>. All the
other binutils should also be available for ARM ELF (e.g., arm-linux-objdump, arm-linux-nm).

. Download SimpleScalar ARM. As of this writing, the latest version can be downloaded from

http://www.simplescalar.com/v4test.html, or using the following command:

% wget http://www.eecs.umich.edu/"taustin/code/arm/simplesim-arm-0.2.tar.gz

. Unpack SimpleScalar and install it.

% tar xzf simplesim-arm-0.2.tar.gz
% cd simplesim-4.0

% make config-arm

% make

Add simplesim-4.0 to your path so the simulators can be seen by your shell. Everything should be
ready to go now.

22

8.2 Running Benchmarks using the ARM Port

Running benchmarks using the ARM port is nearly identical to the HPL-PD path; simply use tccarm
instead of tcc. This will automatically set the appropriate OpenIMPACT and Elcor switches, run the
REBEL-to-ARM translator, assemble/link the assmebly files using arm-linux-gcc, and run the benchmark
using SimpleScalar. For example, tccarm -bench wc will compile and run the wc benchmark.

The options of tccarm can be seen by running tccarm -help. There are two options that are different than
the standard tcc. First, -S is used to pass options directly to the SimpleScalar command line. Second, -T
is used to select which version of SimpleScalar to use: sim-safe, sim-fast, or sim-outorder. For example:
tccarm -bench wc -Tsim-safe -S¢‘-max:inst 3000’ will compile wc and run it using sim-safe for 3000
instructions.

9 Adding a Benchmark

Trimaran provides a number of scripts to make it easier to compile, simulate, verify, and benchmark their
applications. The scripts require that benchmarks are packaged in a specific manner. Example benchmark
packages are included in trimaran/benchmarks, and packages for well known benchmark suites (e.g., SPEC)
are availble for download from our website. An example benchmark package includes the following:

e src/: a directory containing all the source code
e inputl/: a directory containing input files needed to run the benchmark

e outputl/: a corresponding directory containing output files that are necessary to verify the benchmark
output when it is compiled with Trimaran

e compile_info: native preprocessing and linking options
e compile parms: benchmark-specific Trimaran compiler switches

e exec_info_inputl: instructions for running and verifying the benchmark output

You can package your own benchmark for use with the Trimaran toolchain. The process is described below
although it may be easier to copy one of the existing packages and modifying it for your own purposes.

1. Make sure that you can compile your benchmark with gcc. You will need to note all of the related
flags necessary to compile the benchmark, as well as input parameters for running it.

2. Create a new directory for the benchmark. As an example, if you are adding an MPEG-4 decoder
benchmark called mpeg4:

% cd $HOME/
% mkdir mpeg4
% mkdir mpeg4/src

3. The Trimaran compiler requires that all source code (including header files) is located in a flat src
directory. Copy all of the C files and the related header files to src directory.

23

4. The scripts also require information on how to run your benchmark. This is necessary for profiling or
simulating your code. If you benchmark requires input files and produces some output that you want
to verify against, add them to the benchmark package.

% cd mpegé

% mkdir inputl

% cp <INPUT-FILES> inputi
% mkdir outputil

% cp <OUTPUT-FILES> outputl

If you have more than one input-output pair, number the input and output directories as inputl,
input2, ..., and similarly for the output (outputl, output?2, ...). We recommend at least three input-
output pairs: one for testing, one for profiling, and one for benchmarking purposes. You may omit
the input directories if your benchmark does not require any input files. Similarly, you can omit the
output directories if your benchmark does not produce any meaningful output (i.e., it self verifies).

5. Create a new file called compile_info and add it to the new benchmark package directory. This file
will contain information required to properly compile your benchmark. For example, it will include
preprocessing flags and required libraries, as well as the input workloads to use for profiling (training)
and benchmarking (evaluation). The file defines the following six variables, shown here with commonly
used settings:

LINKING_PREOPTIONS="";

LINKING_POSTOPTIONS="-1m";

LIB_REQUIREMENTS="NONE";

Specify default training and evaluation inputs

Seperate multiple input names by a space (e.g., ‘‘inputl input2’’)
DEFAULT_TRAIN="inputl";

DEFAULT_EVAL="input2";

Optimizing the emulation binary is recommended
OPTIMIZE_EMUL_EXEC=1

For more information on compile_info run
% read_compile_info --help

6. Add a new filed called compile parms to the benchmark package directory. This file can customize
Trimaran compiler parameters to the particular benchmark. For most benchmarks this file does not
override any parameters. For some benchmarks however, the optimizations may need tweaking so that
they are more conservative and require less space and time. A standard compile parms is as follows:

No parameters changes are required for this benchmark

Use the baseline parameter file for all the parameter settings
(* $BASELINE_PARMS_FILES$

end)

For more information on the compile_info setting run
read_compile_info --help

7. For each input-output pair, you will also need a file that instructs the scripts on how to execute your
benchmark. For each pair, create a new file called exec_info_inputX, where X = 1,2, ..., and add it to
the benchmark package directory. This file is required for any input workload that you want to use for
profiling or benchmarking (e.g., defined in compile_info. The file defines the following six variables,
shown here with commonly used settings:

24

DESCRIPTION="MPEG-4 decoder"

Link or copy any required input files to the workspace,
or execute some required shell commands

SETUP="1n -sf ${BENCH_DIR}/inputl/shrek.m2v .";

Command needed immediately before executable name
PREFIX="";

Benchmark arguments

ARGS="-b shrek.m2v";

Commands to check output against reference output
CHECK="diff ${RESULT_FILE} ${BENCH_DIR}/outputl/result.out"
Commands to cleanup the workspace

CLEANUP="rm -f shreak2.m2v";

Number of instructions to fast forward the simulation
NOTE: not used by Simu

SKIP="0";

For more information on the execution info files, run

% read_exec_info --help

. Trimaran looks for user-added benchmarks in four places according to the following environment vari-
ables:

$USER_BENCH_PATH1
$USER_BENCH_PATH2
$USER_BENCH_PATH3
$USER_BENCH_PATH4

You may set any of them to point to your benchmark path. It is recommended that you add the
appropriate setting to your envrc[.bash] file (see Section 4).

. You can test your benchmark package with test_bench_info. For example:

% test_bench_info mpeg4

If the test passes, you are ready to use your benchmark with tcc:

% tcc -bench mpegid

10 Modifying Elcor

The Elcor compiler in Trimaran is highly modular, and is well suited for designing and evaluating new
compiler optimizations. The compiler includes a rich suite of analysis passes that you can use to your

10.1 Code Examples

In order to help you jump into the code, there is a directory in Elcor containing several examples of common
things you might want to do in a compiler: $ELCOR HOME/src/Examples. The function run examples()

25

in $ELCOR_HOME/src/Examples/example driver.cpp contains calls to all of the example functions. To run
these examples, set the do_examples flag yes either by changing it in $ELCOR_HOME/parms/DRIVER DEFAULTS
or at the Elcor command line by adding -Fdo_examples=yes.

There are six functions called in run_examples(), each of which demonstrates a different use. They are
outlined below:

e iterate_edges_example: demonstrates how to insert dataflow and other styles of dependency edges
(e.g., control and memory) into the IR, and how to access that information. Also demonstrates how
to walk through all the operations in a function and how to manually adjust edges in the IR.

e slack computation_example: demonstrates how to use the critical path analysis in Elcor, as well as
how to recurse down the IR hierarchy.

e display cfg dfg example: demonstrates how to create a graphical control flow or dataflow graphs
using Dot.

e add new_block example: demonstrates how to create a new control block, and insert it into the IR.

e backedge _coalescing example: demonstrates how to detect loops, and presents more complicated
block creation and control flow restructuring.

e DU_UD_chains_example: demonstrates the use def-use analysis.

10.2 Adding Your Own Code

If you plan to add new analsysis techniques or optimizations to Elcor, we recommend you encpasulate your
code in its own directory. This helps to preserve the compiler modularity and code organization. Here we
outline the process of adding a new Elcor source directory so that it conforms with the compiler and its
build system.

1. Create your new directory

% cd $ELCOR_HOME/src
% mkdir MyOpti

and move the appropriate files into that directory.

2. Edit $ELCOR_HOME/include/make 1links to create an entry for MyOpti that matches the other direc-
tories. For example:

if [-d ../src/MyOpti] ; then
echo "Linking files from MyOpti dir"
1n -s ../src/MyOpti/*.h .;

fi;

This will ensure that all of the header files created in $ELCOR_HOME/src/MyOpti are automatically
linked into $ELCOR_HOME/include when analyzing dependencies with make depend. This also enables
files in other directories to find the necessary header files during compilation.

3. Create a file $ELCOR_HOME/src/MyOpti/MyOpti_all.cpp, and include all of the *.cpp files found in
$ELCOR_HOME/src/MyOpti. For example:

26

% cat MyOpti_all.cpp
#include "foo.cpp"
#include "bar.cpp"
#include "baz.cpp"

The reason for this file is that it speeds up compilation time. Namely grouping all the source files into
a single file avoids repeatedly including the same (large) header files if they are common to many .cpp
files.

. Open $ELCOR_HOME/src/Makefile for editing. There are a few edits you will need to make. First, add
MyOpti to the list ELCOR_SRC_DIRS. Second, add MyOpti_all.cpp to the list ALL_ADDITIONAL SOURCES.

In some cases you may find it necessary to turn your new code into a library so that it can be reused
in other parts of Trimaran, or you may have introduced new data structures that are needed by Simu
for Codegen. To create 1ibMyOpti.a then we recommend you follow an example from the Makefile;
grep for “scalar” in the Makefile for a good example to follow.

. You are all set. Reconstruct the dependences and rebuild Elcor.

% cd $ELCOR_HOME/src
% make depend

You should see “Linking files from MyOpti dir” and “Processing MyOpti/MyOpti_all.cpp” scroll
by. If that worked, then simply recompile Elcor.

% make

10.3 Adding a Command Line Parameter

You may find it useful to have a command line argument to enable or disable any code that you add or
modify. Here we describe how to add command line parameters to Elcor, although adding parameters to
Codegen is very similar. Understand, however, that Elcor (and Codegen) reads all of its parameters from
files in the $ELCOR _HOME/parms directory. Those parameters may be overridden by command line options.
Hence if you add a new command line switch, you should also find the appropriate parameter file and add
a corresponding entry there as well.

As an example, to add a boolean parameter catch_on fire as a new debugging flag requires the following

1. Declare the variable in Elcor. Since this is a debugging flag, it is best to locate it with similar flags in

$ELCOR HOME/src/Main/el debug init.h. Edit the file to declare the new variable:
extern int El_catch_on_fire;

This enables any file that includes el_init.h to access this variable. Note that the code that parses
the command line arguments is written in C, hence boolean values are generally declared as integers.

. Next, declare and initialize the variable in $ELCOR_HOME/src/Main/el debug_init.cpp. Then, modify
El_debug_read _parm() in the same file to read the variable when the Elcor compiler is invoked. In
this case, add

L_read_parm_b(ppi, "catch_on_fire", &El_catch_on_fire);

27

anywhere in the function. The _b at the end of L_read parm signifies that this parameter is a boolean
variable. Other common read function suffixes are _i for integers, _1f for doubles, and _s for strings
(all the parm reading functions can be found in $IMPACT ROOT/src/library/libparms/1 parms.h.

3. Last, edit $ELCOR_HOME/parms/DEBUG DEFAULTS and add
catch_on_fire = yes;

somewhere between (Elcor Debug declaration and end). The yes setting on this line represents
the default value for the parameter if it is not overloaded on the command line.

4. Recompile Elcor and you are all set. To use the parmameter from the command line, add
-E"-Fcatch_on_fire={yes|nol}"

when using tcc or simply -Fcatch_on fire={yes|no} when using Elcor directly.

The example outlined above assumes the new parameter is added to an existing parameter file. If you wish to
create a new parameter file, the process is straightforward: add the file name to $ELCOR_HOME/parms/ELCOR_PARMS,
write your own *_init() function in $ELCOR HOME/src/Main/, and add a hook to your init function in
$ELCOR_HOME/src/Main/el_init.cpp.

10.4 Templates

You may notice that Elcor does not use the standard C++ libary (STL). Elcor, which began in Novem-
ber 1993, predates the standardization and widespread availability of the C++ STL. The Elcor STL-like
functionality is found in $ELCOR_HOME/src/Tools.

Unlike the STL, Elcor’s data structures separate class method declarations and method definitions into
different *.h and *.cpp files. Because of this you must explicitly instantiate templated data structures in
Elcor, or you will encounter link-time compilation errors of the following sort:

Main/main_all.o(.text+0x16a4): In function ‘common_process_function(Procedurex)’:
.../elcor/src/Main/process_function.cpp:131: undefined reference to
‘Vector<Codegen>: :Vector ()’

Main/main_all.o(.text+0x219f):.../elcor/src/Main/process_function.cpp:347:
undefined reference to ‘Vector<Codegen>::~Vector()’
Main/main_all.o(.text+0x2lee):.../elcor/src/Main/process_function.cpp:347:

undefined reference to ‘Vector<Codegen>::~Vector()’
collect2: 1d returned 1 exit status
make: *** [../bin/elcor] Error 1

This error occurs because process_function.cpp has access to the declarations of Vector (from vector.h),
but it does not know where the Vector methods are implemented. As a result, gcc cannot properly instan-
tiate the template. In Elcor, all of the templates are instantiated in $ELCOR_HOME/src/Templates. To
explicitly instantiate a new template, edit the appropriate file in the template directory as follows:

#include "vector.cpp"
#include "codegen.cpp"
template class Vector<Codegen>;

28

This explicitly instantiates the template and resolves the link error.

11 Adding a New Clustering Algorithm

Trimaran implements two instruction clustering algorithms to distribute instructions among the process-
ing clusters in the architecture. The two algorithms are Bottom-Up Greedy (BUG) [2] and Region-Based
Hierarchial Operation Partioning (RHOP) [1].

The process to incorporate a new clustering algorithm is straightforward. We faciliate the process by includ-
ing an example in elcor/src/Examples/random_cluster.*. The example implements a random clustering
algorithm. It randomly distributes program instructions to clusters in the processor.

There are two main steps. First, create a class that extends Cluster_algorithm. In the example, the class
Random_cluster is created; refer to the following example files for details:

elcor/src/Examples/random_cluster.h
elcor/src/Examples/random_cluster.cpp

Next, instruct the cluster manager to user the new clustering algorithm. The clustering algorithm is instan-
tiated in elcor/src/Cluster/cluster.cpp in function Cluster mgr::do_block clustering(). For the
random clustering algorithm, the following code is added:

cluster_alg = new Random_cluster (this);

Similar lines of code can be added for other clustering algorithms.

12 MDES: Machine Description

The machine description (MDES) describes the ISA, operand formats, and the microarchitectural resources
used by the operations in the target processor. The target processor can be a single/multi-cluster with
its ISA derived from the base HPL-PD ISA. Each cluster can be configured to have multiple integer (I),
floating (F), memory (M), and branch (B) functional units the corresponding physical register file types.
Elcor restricts the number of physical register files per type to one per cluster.

The standard Elcor MDES files are located in $TRIMARAN ROOT/elcor/mdes. The file hpl_pd_elcor_std.hmdes2
defines the macros that describe the architectural details of the target processor. They include the number

of clusters, size of the integer, floating, predicate, control, vector and branch registers (both static and rotat-
ing), the number of functional units of each type (I/F/M/B) per cluster, the number of inter-cluster moves
allowed per cycle and the functional unit latencies.

The operations in the target processor ISA are defined in the file hpl_pd_elcor.hmdes2. This file describes
the operations along with the unit specific opcodes associated with each operation and the processor specific
flags (under section Elcor Operation Flag). Notable flags are Is_comm which is true for commutative
operations, and Is_unsupported which flags an Elcor operation that does not have a corresponding version

29

in the target architecture. Elcoruses the latter substitute unsupported operations with equivalent operations
that are supported in the target architecture. For example, the sign extend operation EXT is unsupported
on ARM, and it is replaced by a logical left shift SHL followed by an arithmetic right shift SHRA.

The file hpl_pd_pristine.hmdes2 enumerates the unit specific opcodes corresponding to the target processor
opcodes. In addition, it defines macro registers used internally by the compiler.

12.1 HMDES vs. LMDES

The MDES is described using a high level specification language called Hmdes2 [3]. It has support for
macros and control constructs (e.g., if-then, loops), and allows for a compact machine description of the
target architecture. The script $TRIMARAN ROOT/impact/script/hc compiles *.hmdes2 files to a low level
MDES specification called LMDES. LMDES is a flat form of the HMDES specification that is used internally
by Elcor. Any changes to *.hmdes2 files require a recompilation to generate the corresponding *.lmdes2
files. We provide a Makefile in $TRIMARAN ROOT/elcor/mdes to automate the process.

12.2 Macro Registers

Macro registers (or simply macros) are compiler assumed registers used for code generation related tasks.
Examples macros include the stack pointer, return address registers, parameter passing registers, and loop
counters used for modulo scheduling. It is the responsibility of the user to map these registers to appropriate
physical registers in the target architecture. As an example, the Macro section in hpl_pd_pristine.hmdes?2
lists the standard Elcor macros which are mapped to physical registers in the Register section.

The Macro_Class defines the following flags that may be attributed to macros:

e READ_ONLY: Defines a register to be read only. The register allocator does not register allocate to a
read only register.

e PSEUDO: Certain macros are used within the compiler to pass information internally and do not have
an associated physical register.

e ALTAS: This is used to define multiple macros that are all associated with a single physical register.
For example, in ARM, the INT_RETURN and the INT_PARAM_1 macros point to the same register.

12.3 Stack Descriptor Section

The stack descriptor describes how local variables and function parameters are laid out in memory. Open-
IMPACT performs this layout to a virtual stack, and Elcor (optionally) does the final, physical stack layout.
The following MDES parameters tell Elcor how to do the physical layout.

e Dir: Whether the stack grows from high addresses down, or from low addresses up.

e RetAddrThruStack: Some architectures require the return address (implicitly written on function calls)
to be stored on the stack at a specific location, instead of just being caller/callee saved. Setting this

30

parameter to true saves room on the stack for the return address and inserts the appropriate loads and
stores.

e RetAddrSize: How many bytes to reserve when RetAddrThruStack is set to true.

e Alignment: Many architectures require the top of the stack to be aligned at particular boundaries.
This parameter defines what that alignment is; e.g., Alignment (8) means the top of the stack must
be at an address that’s a multiple of 8 bytes.

12.4 Literal Formats

The unit specific opcodes associated with each operation are used to specify the I/O formats and the
architecture resources used by each operation. The I/O formats specify the register and literal operands
used by each operation. The different literals (or immediates) used by the operations of the target processor
are modeled as register files within the Register section in the MDES. Each such literal register file has a
virtual file type L. In addition, the size in bits and the valid set of values allowed by the literals also have
to be specified. The valid range of values are specified in the Constant Range and Constant_Set sections.
Elcor uses the bitwidth and value ranges to generate appropriate moves if the input literal size does not fit
within the I/O format of the operation.

12.5 Vector Architectures

Trimaran supports selective vectorization as described in Section 5. The vector capabilities of the target
architecture are described in the MDES. The relevant parameters in hpl pd_elcor_std.hmdes?2 include:

e vec_length: This specifies the vector length in number of elements. Currently, all vector registers
must have the same length (heterogeneous vector lengths are not supported).

e vir static_size and vir _rotating size: This specifies the number of static and rotating vector
integer registers. Each register actually consists of vec_length integer elements.

e vir_static_size and vfr_rotating size: This specifies the number of static and rotating vector
floating-point registers. Each register actually consists of vec_length floating-point elements.

e vmr _static_size and vmr _rotating size: These specify vector mask registers. This functionality is
currently unimplemented.

e vec_integer units, vec_integer perm units, vec_integer xfr units: These specify the number of
functional units available for vector computation, vector permutation operations, and vector-scalar
transfer operations.

13 Adding a new Opcode

Trimaran is extensible, and it is possible to add new instructions or opcodes to the compiler and simulator.
This is useful for a variety of compiler or architecture research (see [7] for an example).

The steps outlined below describe the process of adding a floating point multiply-accumulate (FMPYADD)
instruction as an example. The instruction has the following format

31

FMPYADD dest, srcl, src2, src3 if pred

The execution of the operation is guarded by a predicate pred. When the predicate is cleared (pred = 0), the
operation is nullified (i.e., has no effect on the processor state). Otherwise, the instruction has the following
semantics:

dest = srcl * src2 + src3

where the source and destination operands are floating point registers.

There are three steps. First add the instruction to the machine description, then add the instruction to the
compiler (Elcor, and optionally OpenIMPACT), and finally add the instruction to the simulator (Simu).

13.1 Adding Opcodes to MDES
Add the new opcode to the machine description files in $TRIMARAN_ROOT/elcor/mdes.

1. Add the new opcode to hpl_pd_ops.hmdes2:

$def OP_floatarith3_floatmpy FMPYADD

The description above defines a group of instructions that will share common ISA properties. For
example we can also a multiple-substract (FMPYSUB) instruction to the group

$def OP_floatarith3_floatmpy FMPYADD FMPYSUB

since the two instructions have the same I/O format, instruction latency, and scheduling possibilities
(scheduling alternatives).

2. Modify hpl pd _pristine.hmdes2 to specify the operation format, the resource use patterns and the
scheduling alternatives for the new opcode.

Add the instruction format in section Operation Format:

$for (clust in $0..(num_clusters-1)) {
OF_floatarith3_${clust}(
pred(FT_p_${clust})
src(FT_f_${clust} FT_f_${clust} FT_f_${clust})
dest (FT_f_${clust})
);

In this example, the instruction format is declared to be the same on each of the available clusters,
indexed by a loop variable ${clust}.

The operation format states that the instruction requires a predicate operand whose file type FT is a
predicate register (p). There are three source operands, each of type £ for floating point, as well as a
single destination operand of the same file type.

The next step is to add a scheduling alternative for the opcode in Scheduling Alternative:

32

$for (clust in $0.. (num_clusters-1)) {
$for (idx in $0..(float_units-1)) {
SA_floatarith3_floatmpy_${clust}_£${idx} (
format (OF_floatarith3_${clust})
latency(OL_floatmpy)
resv(RT_${clust}_f${idx})

The scheduling alternatives provide information required by the scheduler. There is a scheduling
alternative defined for each resource that supports the opcode (i.e., can execute the instruction). In
this case, FMPYADD instructions can execute on any of the floating point units on any of the clusters.

The scheduling alternative also declares the operation latency latency(0L_floatmpy), and the reser-
vation table entries that are reserved when the instruction is scheduled on the corresponding resources
resv(---). The reservation patterns may include functional units, register ports, and operand network
wires. The example assumes FMPYADD uses the same resources as other floating point operations, so an
existing reservation pattern is used. The section Reservation_Table defines reservation patterns, and
new patterns may be added there if necessary.

Finally the opcode is added to the ISA in the Operations section:

$for (class in floatarithil_float floatarithl_floatdiv
floatarith2_float floatarith2_floatdiv floatarith2_floatmpy
floatarith3_floatmpy) {
$for (op in ${0P_${class}}) {
$for (w in ${float_widths}) {
"${op}_${w}_${clust}.${idx}" (alt (SA_${class}_${clust}_£${idx}));
}

Many operations in different classes are added to the ISA by the above code segment. For each
operation, the list of scheduling alternatives is bound to the operation. When the HMDES is compiled
to LMDES, it will produce the following opcodes:

FMPYADD_
FMPYADD_
FMPYADD_D_
FMPYADD_D_

0 n

_0.0
_1.0

0.0
1.0

These opcodes are known as unit-specific opcodes, and each may appear as a s_opcode in the REBEL
files. The S and D attributes in the opcode dictate the width of the operation: single and double
precision, respectively. The number preceeding the period specifies the cluster where the operation is
scheduled, and the number following the period specifies the functional unit used for the operation.

. Add the abstract opcode to hpl_pd_elcor.hmdes2. These opcodes also appear in the REBEL files, but
only describe the functionality of the operation. An Elcor opcode can correspond to many unit-specific
opcodes and they are associated with flags that specify the properties of the opcode. The following
adds FMPYADD as well as a few others to the list of Elcor opcodes.

33

$for (class in floatarithl_float floatarithl_floatdiv floatarith2_float
floatarith2_floatdiv floatarith2_floatmpy floatarith3_floatmpy) {
$for (op in ${0P_${class}}) {
$for (w in ${float_widths}) {

${op}_${w}(op($for (clust in $0..(num_clusters-1)) {

$for (idx in $0..(float_units-1)) {
"${op}_${w}_${clust}.${idx}"}})

flags (ARITHOP FLOAT SPECULATIVE));

4. Compile the HMDES to LMDES. There is a Makefile in the directory for convenience. Type make to
compile the MDES changes.

13.2 Adding Opcodes to Elcor

Opcodes in Elcor are declared using enumerated types, or in otherwords, the are defined as integer constants.
The Elcor opcodes are defined in $TRIMARAN ROOT/elcor/src/Graph. Each opcode has a root opcode (lower
8 bits) and an opcode modifier (upper 24 bits). The modifier is used when there are groups of opcodes with
similar functionality (e.g., compare to predicate instruction or CMPP).

New opcodes may require new root opcodes. For FMPYADD for example, we added a new root opcode
ROOT_FMPYADD to the IR_ROOT_OPCODE enumeration. The single and double precision opcodes are then added
to Opcode enumeration:

FMPYADD_S
FMPYADD_D

ROOT_FMPYADD,
ROOT_FMPYADD | IR_DOUBLE,

Next, bind the opcode to a string equivalent (name). This is necessary for generating REBEL files, and for
generating error messages. Edit the procedure el_init_elcor_opcode maps_arithmetic() in
$TRIMARAN ROOT/elcor/src/Graph/opcode. cpp. For FMPYADD S, we added:

el_string_to_opcode_map.bind ("FMPYADD_S", FMPYADD_S) ;
el_opcode_to_string_map.bind (FMPYADD_S, "FMPYADD_S") ;

to provide a mapping between the opcode integer and string values.

At this point, recompile Elcor. The compiler will recognize the opcode, although the instruction selection
cannot use the new opcode unless you instruct the compiler when it should use it. In our example, we will
need an analysis phase to find multiply-add instrution chains and replace them with the new opcode. The
next section describes an alternate methodology to facilitate the process of retargetting the ISA.

34

13.3 Adding Opcodes to OpenIMPACT

If you intend to use Elcor to generate Lcode for OpenIMPACT, you will also need to add the opcode to
OpenIMPACT. The opcodes in OpenIMPACT are defined in two places:

$TRIMARAN ROOT/openimpact/src/Lcode/Lecode/1 opc.h defines the common opcodes that are used by
all architectures, and the $TRIMARAN ROOT/openimpact/src/machine/Mspec directory contains opcode files
that are specific to particular architectures. For example, the file m_hpl_pd.h defines opcodes for the HPL-PD
architecture. HPL-PD is the default Trimaran architecture and new opcodes should be added there.

Each new opcode requires an integer and a string value. For FMPYADDN_S the following definitions were added

#define PLAYDOHop_FMPYADDN_S 1475 /* Lop_MUL_ADD_F */

#define PLAYDOHopcode_FMPYADDN_S "PLAYDOHop_FMPYADDN_S"

Lastly, specify the mapping between Elcor and OpenIMPACT opcodes. This is accomplished in
$TRIMARAN ROOT/elcor/src/Impact/el opcode map.cpp. For FMPYADD_S, we added:

el_lcode_to_elcor_opcode_map.bind(Lop_MUL_ADD_F,FMPYADD_S);

el_elcor_to_lcode_opcode_map.bind (FMPYADD_S,Lop_MUL_ADD_F);

to the el_init_lcode_opcode_arith() procedure.

At this point, recompile Elcor and OpenIMPACTto complete the compiler edits.

13.4 Adding Opcode to Simu

The final step is to instruct the simulator how to simulate the new instruction. The simulator automatically
generates code for each opcode. The opcodes are described in $TRIMARAN ROOT/simu/src/emulib/PD ops.list.
The file consists of several sections. Each section contains a list of opcodes descriptions. The opcodes are
grouped according to functionality. For example the section [float_arith] groups floating point arithmetic
operations. The code generated for the opcodes in that section will appear in a file PD_float_arith ops.c.

There is one line per opcode. The FMPYADD_S opcode description appears as follows:
FMPYADD_S ?F,F,F:F;sp FP Multiply-Accumulate destl.S = srcl.S * src2.S + src3.S

There are four fields in the opcode specification. The fields are seperated by tabs. Improper formatting will
cause the Emulib parser to fail.

The first field corresponds to the opcode name. The second field indicates if the operation has a predicated
equivalent (7). It is followed by a comma seperated list of source operand types. In the example, F,F,F
decribes three source operands of type float. Source operands are seperated from destination operands by a
colon. The list of destination operands is terminated by a semicolon. The last part of the field indicates if
the operation can be issued speculatively (sp).

35

The third field describes the operation and will appear as a comment in the generated code. The last field
describes the operation semantics. The keywords srcl, src2, ... refer to the first, second, . . . source operands,
and similarly dest1, dest2, ..., refer to the destination operands. The .S modifier is used to indicate single
precision computation, whereas .D indicates double precision. The code generator automatically generates
the appropriate casts.

It is possible to express more complex semantics, including conditionals. If the description becomes unwieldy,
you can encapsulate the semantics in a C function and replace the last field by a function call. There are
several such examples in PD_ops.1list.

Modifications to PD_ops.list take effect when Emulib is compiled. Use the included Makefile to recom-
pile the library. The build process will run gen functions found in the gen subdirectory. It will parse
PD_ops.list and generate the appropriate simulation code. The newly generated code is then compiled and
a new emulation library is generated.

The code for FMPYADD_S will appears in two functions:

void __PD_FMPY_S_reg_reg(__PD_OP *op);
void __PD_FMPY_S_reg_reg_pred(__PD_0OP *op);

The first implements the operation semantics, and the second guards the execution of the first according
to the predicate operand. The functions will appear in the file PD_float_arith ops.c. Since the files are
automatically generated, you should not modify them. Any changes that are made in the generated files are
lost whenever Emulib is compiled.

14 Customized Instructions

The previous section described one way to add an opcode in Trimaran. For non-computation instructions
(e.g., loads and branches), this is the only way to add a new opcode. Elcor can however automatically
identify acyclic computation graphs and replace them with new opcodes. The benefit of using this method is
that the process is entirely MDES driven (meaning Elcor does not have to be recompiled to add instructions),
and hence it provides an effective ISA retargetting methodology.

An example acyclic graph used in this example is shown in Figure 4. This graph represents a typical multiply-
accumulate instruction. The Elcor pattern matcher uses a description an MDES description of the graph to
find all instances that occur in the IR, and replaces them with the new instruction. The particular MDES
that describes this graph can be found in $TRIMARAN ROOT/elcor/mdes/mac_example.hmdes2.

The first few sections in this MDES file simply describe the compiler view of the custom operation to be
added (much like in the previous section). Operation Format describes what operands the new opcode can
accept. In this case, there are 3 sources and 1 destination. The Scheduling Alternative extends that
description to include the latency of the new operation, as well as the resources used. Operation defines the
name of a particular alternative.

Once the compiler view of the custom instruction is in place, it is necessary to define the graph for the Elcor
pattern matcher. The first section, Pattern Node Flags, defines some properties of nodes that are declared
later. These names are significant and should not be modified. The next section, Pattern Edge, defines the
edges in the graph; notice that each of the 5 edges in Figure 4 is declared in mac_example.hmdes2. The

36

®

Figure 4: Example acyclic computation graph for multiply-accumulate.

names in this section are not important, and you may choose names that you find appropriate to describe
the graph.

Next, the graph nodes are defined in Pattern_Nodes. In the example there are 6 nodes to match Fig-
ure 4. Inputs to the pattern are marked with the LIVE_IN flag, and outputs with LIVE_OUT. Nodes declare
the opcodes of their corresponding computation. In the example, add supports the opcodes ADD_W and
ADDL_W. Each of the opcodes listed in these declarations must appear in the opcode_to_string map defined
in $TRIMARAN ROOT/elcor/src/Graph/opcodex*. cpp.

Next, the nodes are connected using the previously declared edges. Each node has a src and a dest that
describe where the operands come from or go to. Note that order is important here. The edge for the first
source declared for a non-commutative operation (e.g., subtract) is treated differently than the second source
in the pattern matcher. Edges can be used in the hyper-edge sense as well (i.e., they can appear in multiple
source and destination declarations). This allows the expression of graphs that have a single result consumed
by multiple operations.

Once all the nodes are defined, they are collected into a Customop_Graph and attached to the Operation de-
fined earlier in the Custom_Operation section. The name of the custom instruction, in this case MAC_example

will appear in the IR as the custom opcode.

The new instruction is now fully defined. To instruct the compiler to use it for instruction selection, edit
$TRIMARAN ROOT/elcor/mdes/hpl pd_elcor_std.hmdes2, add

$include "mac_example.hmdes2"
at the end of the file, and recompile it to generate a new LMDES file:
% hc hpl_pd_elcor_std.hmdes?2
Finally rerun the compiler with the do_prepass_custom_ops flag turned on. For example:

% tcc -bench fir -E"-Fdo_prepass_custom_ops=yes"

37

Any occurrences of the graph that are found in the application are replaced automatically with the new
operation. Note however that you must still modify Simu to recognize the new opcode, as was described in
the previous section.

15 Troubleshooting

The following are some common error messages you might encounter when using Trimaran, along with
suggested remedies.

e Compiler Build Errors

— make error: Undefined reference to Vector, List, Hash_set_filterator, etc.
undefined reference to ‘Vector<Codegen>::Vector()’

This error usually indicates an issue with your template declarations. Refer to Section 10.4 for
details.

— make error: Include file not found (e.g. any .h file)
Your shell environment may not be properly set up. Refer to Section 4 for details.

e MDES Errors

— make error: Command not found (e.g. /scripts/hc)
Your shell environment may not be properly set up. Refer to Section 4 for details.

— My MDES changes don’t seem to be taking effect.

Whenever you update a high-level MDES file (.hmdes2), you must recompile it (using hc) to
generate a new .lmdes2 file. See Section 12.1 for details.

e Simulation Errors

— tcc error: Result Check ***FAILED***

This means that the output of the benchmark did not match the expected output. Chances are
the benchmark was compiled incorrectly. This is usually one of the trickier errors to debug; see
Section 15.1 for helpful tips.

You can examine the benchmark workspace files in simu_intermediate/result.err for more
information. This will be useful in the event Simu crashed unexpectedly. If there is no information
here, then it’s just a result check mismatch.

Another possibility, which usually only occurs if you packaged your own benchmark, is that the
“expected” output is wrong. Refer to Section 9 to ensure the benchmark is setup correctly. The
test_bench_info script may help.

— tcc error: M5_CONFIG_FILE does not exist

Simu was compiled with M5elements linked in, but the environment variable M5_CONFIG_FILE did
not point to an M5 configuration file.

38

15.1 Benchmark Debugging Tips

On rare occasions, by chances of ill luck, one might encounter the dreaded Result Check FAILED message
at the end of a benchmark execution. There are two ways to help pinpoint where the problem is occuring:

e Narrow the space by identifying which source file in the benchmark led to failure. See Section 15.1.1.

e Narrow the space by identifying which compiler transformation/pass led to failure. See Sec-
tion 15.1.2.

15.1.1 Simulating Each Source File Individually

Since each benchmark is comprised of one or more source C files, we can compile the files individually and
determine which one caused failure. A script is provided that automatically compiles the entire benchmark
using the host machine’s compiler (e.g. gec), and substitutes one Trimaran-compiled file into the benchmark
at a time. The combined executable is run partially through Simu, and partially natively.

The script is found at $TRIMARAN_ROOT/scripts/replace_good.pl. Instructions are provided in the com-
ments at the beginning of the script.

15.1.2 Turning Off Elcor Passes

Another way to pinpoint what caused benchmark failure is to turn off various passes in Trimaran and rerun
tcc to see if simulation succeeds.

The Trimaran flags referenced below appear in elcor/parms/DRIVER DEFAULTS, unless they are noted to
control Simu, in which case they appear in simu/parms/SIMULATOR DEFAULTS. The following tips are listed
in an order that is convenient to follow for debugging, but it is not a strict guideline.

Locate problem: First thing is to locate which part of the compiler is responsible for the incorrect exe-
cution. The three most important parts are 1. OpenIMPACT, 2. Elcor, and 3. Simu. One can skim
through the output generated by the execution of tcc and get hints from it.

Elcor processing: There are many complex optimizations within Elcor that can lead to benchmark failure
if something goes wrong. So, as a first measure, one should disable all processing within Elcor by
turning on the do_null_processing for_simu flag. For the resulting code to simulate properly, you
should also turn on the flags emulate_unscheduled and emulate_virtual regs in Simu. If this action
makes things work, i.e. the benchmark runs successfully, then the problem is definitely within Elcor.
More steps (as discussed by the following techniques) can be taken in such a situation.

Elcor modulo scheduling: Modulo scheduling [8] is an advanced optimization for loops. If incorrect, it can
lead to benchmark failure. Try disabling modulo scheduling by turning off the do_modulo_scheduling
flag in Elcor.

Elcor postpass scheduling: To turn off postpass scheduling, set do_postpass_scalar_scheduling in
Elcor. To ensure proper simulation, you will also need to turn on the emulate_unscheduled flag in
Simu.

39

Elcor register allocation: Another simplification that can be applied is the compilation of code without
register allocation. Elcor does not perform register allocation when do_scalar regalloc is turned off.

If you suspect a register allocation bug, turn it off in Elcor, and instruct Simu to simulate the benchmark
with virtual registers. This is done by turning on the emulate virtual regs flag in Simu.

Note that when register allocation is performed, you must also perform postpass scheduling to schedule
any spill code. This is accomplished by enabling do_postpass_scalar_scheduling.

Elcor clustering: Some architecture configurations can cause unexpected failures during compilation. One
example is a multi-clustered architecture. This and other architecture attributes can be changed by
modifying the appropriate MDES file (e.g., elcor/mdes/hpl pd_elcor_std.hmdes?2). In general it is a
good idea to test if the single-cluster configuration passes compilation. Setting the number of clusters
to 1 disables the instruction clustering algorithms.

Elcor prepass scheduling: Prepass scheduling occurs before register allocation; turning it off is very simi-
lar to turning off postpass scheduling. To turn off prepass scheduling, set do_prepass_scalar_scheduling
in Elcor. To ensure proper simulation, you will also need to turn on the emulate_unscheduled flag in
Simu.

Elcor optimization: It is possible to disable classic code optimizations from Elcor by toggling the do_classic_opti
flag. This can be used to target bugs resulting from optimizations steps within Elcor. Finer manage-
ment of optimization flags can be done through switches defined in elcor/parms/0PTI DEFAULTS.

16 Help! My question wasn’t answered here.

If you have other questions or problems regarding Trimaran, please visit our webage http://www.trimaran.org
and sign up for our email list. Announcements of bug fixes and periodic updates are posted on this list, so
if you plan on using Trimaran, it is a good idea to sign up.

Acknowledgements

Trimaran is the result of many person-years of research and development. It began as a collaborative
effort between the Compiler and Architecture Research (CAR) Group at Hewlett Packard Laboratories, the
IMPACT Research Group at the University of Illinois, and the Center for Research on Embedded Systems
and Technology (CREST) at the Georgia Institute of Technology. CREST was the ReaCT-ILP Laboratory
at New York University. We thank the contributors to Trimaran:

e George Washington University : Ajay Jayaraj, Yogesh Chobe

e Georgia Institute of Technology (CREST: Center for Research on Embedded Systems
and Technology) : Lakshmi Chakrapani, Mongkol Ekpanyapong, Krishna Palem, Weng-fai Wong

e HP Laboratories (CAR: Compiler and Architecture Research Group) : Santosh Abraham,
Sadun Anik, Alex Eichenberger, Shail Aditya Gupta, Matt Jennings, Richard Johnson, Joel Jones,
Vinod Kathail, Matthai Philipose, Bob Rau, Sumedh Sathaye, Mike Schlansker, Robert Schreiber,
Greg Snider

e Massachusetts Institute of Technology : Mark Hampton, Sam Larsen, Rodric Rabbah

40

We

e New York University (ReaCT-ILP Laboratory) : Robert Dewar, Ben Goldberg, Hansoo Kim,
Amit Nene, Igor Petchansky, Suren Talla, Sam Tregar

e University of Illinois (IMPACT Research Group) : David August, Roger Bringmann, Pohua
Chang, William Chen, Ben-Chung Cheng, Dan Conners, Kevin Crozier, Brian Deitrich, David Gal-
lagher, John Gyllenhaal, Grant Haab, Richard Hank, Hillery Hunter, Sabrina Hwu, Wen-mei Hwu,
Teresa Johnson, Robert Kidd, Hong-Seok Kim, Dan Lavery, Eric Nystrom, Shane Ryoo, John Sias,
Sain-Zee Ueng, Nancy Warter, Le-Chun Wu

e University of Michigan (CCCP Research Group) : Aaron Erlandson, Jason Blome, Mike Chu,
Nate Clark, Ganesh Dasika, Kevin Fan, Shuguang Feng, Shantanu Gupta, Amir Hormati, Manjunath
Kudlur, Steve Lieberman, Yuan Lin, Scott Mahlke, Robert Mullenix, Pracheeti Nagarkar, Hyunchul
Park, Rajiv Ravindran, Mikhail Smelyanskiy, Hongtao Zhong

are most grateful for the support from ARM, DARPA, NSF, HP Labs, and Yamacraw. Their support

over the last several years has made it possible for us to continue to develop and maintain Trimaran, and
make it available to the community for research and education.

References

[1]

M. Chu, K. Fan, and S. Mahlke. Region-based hierarchical operation partitioning for multicluster
processors. pages 300-311, June 2003.

J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge, MA, 1985.

J. Gyllenhaal, W. Hwu, and B. R. Rau. HMDES version 2.0 specification. Technical Report IMPACT-
96-3, University of Illinois, Urbana-Champaign, 1996.

V. Kathail, M. Schlansker, and B. Rau. HPL-PD architecture specification: Version 1.1. Technical
Report HPL-93-80(R.1), Feb. 2000.

J. Knoop, O. Ruething, and B. Steffen. Lazy Code Motion. In Proceedings of the ACM SIGPLAN
’92 Conference on Programming Language Design and Implementation, volume 27, pages 224-234, San
Francisco, CA, June 1992.

S. Larsen. Compilation Techniques for Short-Vector Instructions. PhD thesis, Massachusetts Institute
of Technology, April 2006.

R. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-F. Wong. Compiler orchestrated prefetching
via speculation and predication. In Proceedings of the the 11th international conference on Architectural
Support for Programming Languages and Operating Systems, pages 189-198, 2004.

B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops. In 27th Annual
International Symposium on Microarchitecture, pages 63-74, San Jose, California, Nov. 1994.

D. Seal. ARM Architecture Reference Manual. Addison-Wesley, London, UK, 2000.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S.-W.
Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers. ACM SIGPLAN Notices, 29(12):31-37, December 1994.

41

